研究生: |
藍若琳 Lan, Jo-Lin |
---|---|
論文名稱: |
PVP-capped Pt Nano-Clusters as Catalyst for Counter Electrode of Dye Sensitized Solar Cell and Grid-type DSSC Module 高分子包覆奈米鉑簇運用於染料敏化太陽能電池與模組之陰極研究 |
指導教授: |
萬其超
Wan, Chi-Chao |
口試委員: |
王詠雲
刁維光 顏溪成 胡啟章 梁榮昌 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 182 |
中文關鍵詞: | 染料敏化太陽能電池及模組 、奈米鉑對電極 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
We have developed (Poly-N-vinyl-2-pyrrolidone) PVP-capped Pt nano-clusters on transparent conductive oxide (TCO) glasses via a simple “2-step dip coating process” as counter electrode for DSSC. This new counter electrode was examined by transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), thermal gravimetric analysis (TGA), and current-voltage curve (I-V curve). The TEM results reveal that PVP-capped Pt nano-clusters’ size is about 3nm, and the amount of Pt deposited on ITO glass is about 5 μg/cm2. TGA results show that the optimum annealing condition for PVP-capped Pt nanoclusters counter electrode (PVP-Pt CE) is around 270oC 15mins, and charge transfer resistance (RCT) was found below 1 ohm-cm2 and the power conversion efficiency with this counter electrode could exceed 9%.
Besides being deposited on TCO glass, PVP-capped Pt nano-clusters can also be coated on flexible carbon fiber paper via the same “2-step dip coating process”. This kind of counter electrode has not only acceptable catalytic activity, but low sheet resistance, cheap cost and flexibility. In addition, the production can employ by continuous spinning technology under ambient conditions in the future. Hence mass production will be much easier and less expensive.
Furthermore, the durability of PVP-Pt CE on TCO glass for dye-sensitized solar cell (DSSC) has been extensively evaluated including electrochemical reaction durability, thermal stress durability and light soaking durability. It is revealed that PVP-Pt CE exhibits both electrochemical and thermal durability by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) test. As for the device thermal durability, both low-volatile and non-volatile electrolyte systems were tested and the results show that the relative efficiency can remain above 85 % after accelerated thermal test at 85oC for 1000 hours, and 110% after 60oC for 1000 hours. For the light soaking test under 60oC after 1000 hours, the relative efficiency can still be maintained at 94%.
We also applied PVP- Pt CE to large scale grid-type DSSC module, and studied the correlation between the resistive loss and the output power by altering the Ag grid pattern. Further indoor application of grid-type DSSC module was integrated with a fluorescent lamp stand. In order to improve the DSSC performance at various incident light conditions, the relationship between the power conversion efficiency and the electrochemical impedance spectrum was explored, and we found that the iodine concentration in the electrolyte was key factor affecting the DSSC performance. Therefore, by optimizing the composition of electrolyte for low incident light condition, we can improve the output power by nearly 15% for each DSSC module.
1. Oliver Morton, “Solar energy: A new day dawning?: Silicon Valley sunrise”, Nature, 443, 19-22 (2006).
2. From the world wide web: http://pvcdrom.pveducation.org/index.html
3. 施敏原著、黃調元譯,「半導體元件物理與製作技術」,第九章,國立交通大學出版社 (2002).
4. From the world wide web: http://www.nrel.gov/
5. From the world wide web: http://www.solarbuzz.com/
6. A. Hagfeldt, M. Graetzel, “Light-Induced Redox Reactions in Nanocrystalline Systems”, Chemical Reviews, 95, 49 (1995).
7. B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 film”, Nature, 335, 737 (1991).
8. M. Grätzel, “Photoelectrochemical Cells”, Nature, 414, 338 (2001).
9. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 3 (2004).
10. K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coordination Chemistry Reviews, 177, 347 (1998).
11. T. Miyasaka, Y. Kijitori, “Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers”, Journal of the Electrochemical Society, 151, A1767-A1773 (2004).
12. Takuma Muto, Masashi Ikegami, Koichi Kobayashi, Tsutomu Miyasaka, “Conductive Polymer-based Mesoscopic Counterelectrodes for Plastic Dye-sensitized Solar Cells”, Chemistry Letters, 36, 804 (2007).
13. S. Ito, N. C. Ha, G. Rothenberger, P. Liska, P. Comte, M. Zakeeruddin, P. Péchy, M. K. Nazeeruddin, M. Grätzel, “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode”, Chemical Communications, 4004–4006 (2006).
14. M. G. Kang, N. G. Park, K. S. Ryu, S. H. Chang, K. J. Kim, “A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate”, Solar Energy Materials and Solar Cells, 90, 574–581 (2006).
15. T. Stergiopoulos, I. M. Arabatzis, H. Cachet, P. Falaras, “Photoelectrochemistry at SnO2 particulate fractal electrodes sensitized by a ruthenium complex: Solid-state solar cell assembling by incorporating a composite polymer electrolyte”, Journal of Photochemistry and Photobiology A: Chemistry, 155, 163 (2003).
16. N.-G. Park, M. G. Kang, K. S. Ryu, K. M. Kim, S. H.Chang, “Photovoltaic characteristics of dye-sensitized surface-modified nanocrystalline SnO2 solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 161, 105 (2004).
17. M. K. I. Senevirathna, P. K. D. D. P. Pitigala, E. V. A. Premalal, K. Tennakone, G. R. A. Kumara, A. Konno, “Stability of the SnO2/MgO dye-sensitized photoelectrochemical solar cell”, Solar Energy Materials and Solar Cells, 91, 544 (2007).
18. J. B. Baxter, E. S. Aydil, “Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires”, Solar Energy Materials and Solar Cells, 90, 607 (2006).
19. Y. F. Gao, M. Nagai, “Morphology Evolution of ZnO Thin Films from Aqueous Solutions and Their Application to Solar Cells”, Langmuir, 22, 3936 (2006).
20. M. Quintana, T. Edvinsson, A. Hagfeldt, G. Boschloo, “Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime”, Journal of Physical Chemistry C, 111, 1035 (2007).
21. K. Sayama, H. Sugihara, H. Arakawa, “Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye”, Chemistry of Materials, 10, 3825 (1998).
22. P. Guo, M. A. Aegerter, “RU(II) sensitized Nb2O5 solar cell made by the sol-gel process”, Thin Solid Films, 351, 290 (1999).
23. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, H. Arakawa, “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells”, Solar Energy Materials and Solar Cells, 64, 115 (2000).
24. A. Zaban, S. G. Chen, S. Chappel, B. A. Gregg, “Bilayer nanoporous electrodes for dye sensitized solar cells”, Chemical Communication, 2231 (2000).
25. A. Turkovic, Z. C. Orel, “Dye-sensitized solar cell with CeO2 and mixed CeO2/SnO2 photoanodes”, Solar Energy Materials and Solar Cells, 45, 275 (1997).
26. F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Gratzel, D. Gal, S. Ruhle, and D. Cahen, “Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5, and SrTiO3 Nanocrystalline Photoanodes: Indication for Electron Injection from Higher Excited Dye States”, Journal of Physical Chemistry B, 105, 6347 (2001).
27. J. Bandara, H. C. Weerasinghe, “Enhancement of photovoltage of dye-sensitized solid-state solar cells by introducing high-band-gap oxide layers”, Solar Energy Materials and Solar Cells, 88, 341 (2005).
28. Y. Xu, M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals”, American Mineralogist, 85, 543 (2000).
29. N.-G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, Journal of Physical Chemistry B, 104, 8989 (2000).
30. K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, A. J. Frank, “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells”, Journal of Physical Chemistry B, 107, 7759 (2003).
31. S. Somiya, R. Roy, “Hydrothermal synthesis of fine oxide powders”, Bulletin of Material Science, 23, 6, 453 (2000).
32. P. W. Voorhees, “The theory of Ostwald ripening”, Journal of Statistical Physics, 38, 1-2, 231 (1985).
33. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, Michael Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%”, Thin Solid Films, 516, 4613–4619 (2008).
34. J. N. Hart, D. Menzies, Y-B Cheng, G. P. Simon, and L. Spiccia, “ TiO2 sol–gel blocking layers for dye-sensitized solar cells”, Comptes Rendus Chimie, 9, 622 (2006).
35. T. Miyasaka, and Y. Kijitori, “Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers”, Journal of The Electrochemical Society, 151, A1767 (2004).
36. T. Miyasaka, Y. Kijitori, T. N. Murakami, M. Kimura, and S. Uegusa,” Efficient Nonsintering Type Dye-sensitized Photocells Based on Electrophoretically Deposited TiO2 Layers”, Chemistry Letters, 31, 1250 (2002).
37. M. Fujimoto, T. Kado, W. Takashima, K. Kaneto, and Shuzi Hayase, “Dye-Sensitized Solar Cells Fabricated by Electrospray Coating Using TiO2 Nanocrystal Dispersion Solution”, Journal of The Electrochemical Society, 153, A826 (2006).
38. D.S. Tsoukleris, I.M. Arabatzis, E. Chatzivasiloglou, A.I. Kontos, V. Belessi, M.C. Bernard, and P. Falaras, “2-Ethyl-1-hexanol based screen-printed titania thin films for dye-sensitized solar cells”, Solar Energy, 79, 422–430 (2005).
39. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells”, Nano Letters, 6, 215 (2006).
40. C. A. Grimes, “Synthesis and application of highly ordered arrays of TiO2 nanotubes”, Journal of Material Chemistry, 17, 1451, (2007).
41. K. Shankar, G. K. Mor, H. E Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, and C. A. Grimes, “Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells”, Nanotechnology, 18, 065707 (2007).
42. J. H. Park, T. W. Lee, and M. G. Kang, “Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells”, Chemical Communications, 2867 (2008).
43. S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, 90, 1176 (2006).
44. Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell”, Coordination Chemistry Reviews, 248, 1381 (2004).
45. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, “Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers”, Journal of the American Chemical Society, 125 (2), 475 (2003).
46. P. M. Sommeling, B. C. O'Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, and J. A. M. van Roosmalen, “Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells”, Journal of Physical Chemistry B , 110, 19191 (2006).
47. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 3 (2004).
48. M. K. Nazeeruddin, A. Kay, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-XzBis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, Journal of the American Chemical Society, 115, 6382 (1993).
49. P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser, and M. G, “Molecular-Scale Interface Engineering of TiO2 Nanocrystals: Improving the Efficiency and Stability of Dye-Sensitized Solar Cells”, Advanced Materials, 15, 2101 (2003).
50. M. K. Nazeeruddin, P. Péchy and M. Grätzel, “Efficient panchromatic sensitization of nanocrystallineTiO2 films by a black dye based on atrithiocyanato–ruthenium complex”, Chemical Communications, 1705 (1997).
51. M. K. Nazeeruddin, P. Pe´chy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, Le Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, Journal of the American Chemical Society, 123, 1613 (2001).
52. C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen, and K. C. Ho, “A Ruthenium Complex with Super high Light-Harvesting Capacity for Dye-Sensitized Solar Cells”, Angewandte Chemie International Edition, 45, 5822 (2006).
53. J. G. Chen, C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, K. C. Ho, “On the photophysical and electrochemical studies of dye-sensitized solar cells with the new dye CYC-B1”, Solar Energy Materials and Solar Cells, 92, 1723 (2008).
54. C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J.-D Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”, ACS Nano, 3 (10), 3103 (2009).
55. M. Yang, D. Thompson, G. Meyer, “Dual Pathways for TiO2 Sensitization by Na2[Fe(bpy)(CN)4]”, Inorganic Chemistry, 39, 3738 (2000).
56. M. Alebbi and C. A. Bignozzi, “The Limiting Role of Iodide Oxidation in cis-Os(dcb)2(CN)2/TiO2 Photoelectrochemical Cells”, Journal of Physical Chemistry B, 102 (39), 7577 (1998).
57. A. J. Mozer, P. Wagner, D. L. Officer, G. G. Wallace, W. M. Campbell, M. Miyashita, K. Sunahara and S. Mori, “The origin of open circuit voltage of porphyrin-sensitised TiO2 solar cells”, Chemical Communications, 4741 (2008).
58. C. W. Lee, H. P. Lu, C. M. Lan, Y. L. Huang, Y. R. Liang, W. N. Yen, Y. C. Liu, Y. S. Lin, W. G. Diau, C. Y. Yeh, “Novel Zinc Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Synthesis and Spectral, Electrochemical, and Photovoltaic Properties”, Chemistry - A European Journal, 15, 1403 (2009).
59. T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, “High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes”, Journal of the American Chemical Society, 126 (39), 12218 (2004).
60. K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells”, Journal of Physical Chemistry B, 107, 597 (2003).
61. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell”, Journal of Electroanalytical Chemistry, 570, 257 (2004).
62. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 179 (2004).
63. N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media”, Journal of The Electrochemical Society, 144, 876 (1997).
64. S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo, and D. Y. Kim, “Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells”, Electrochimica Acta, 51, 3814 (2006).
65. T. C. Wei, Y. Y. Wang, and C. C. Wan, “Poly (N-vinyl-2-pyrrolidone)-capped Platinum Nanoclusters on Indium-Tin Oxide Glass as Counter Electrode for Dye-sensitized Solar Cells”, Applied Physical Letters. 88, 103122 (2006).
66. T. C. Wei, C. C. Wan, Y. Y. Wang, C. M. Chen and H. S. Shiu, “Immobilization of Poly(N-vinyl-2-pyrrolidone)-Capped Platinum Nanoclusters on Indium-Tin Oxide Glass and Its Application in Dye-Sensitized Solar Cells”, Journal of Physical Chemistry C, 111, 4847 (2007).
67. A. Kay and M. Grätzel, “Low cost photovoltaics modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Solar Energy Materials and Solar Cells, 44, 99 (1996).
68. K. Suzuki, M. Yamamoto, M. Kumagai, and S. Yanagida, “Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells”, Chemistry Letters, 32, 28 (2003).
69. T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel, “Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes”, Journal of The Electrochemical Society, 153, a2255 (2006).
70. Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, “I-/I3- redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 153 (2004).
71. K. M. Lee, P. Y. Chen, C. Y. Hsu, J. H. Huang,W. H. Ho, H. C. Chen, K. C. Ho, “A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells”, Journal of Power Sources, 188, 313 (2009).
72. G. Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane, “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells”, Solar Energy Materials and Solar Cells, 70, 85 (2001).
73. J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, and Y. Huang, “Progress on the electrolytes for dye-sensitized solar cells”, Pure and Applied Chemistry, 80, 11, 2241 (2008).
74. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, and M. Grätzel, ‘The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications”, Journal of The Electrochemical Society, 143, 10, 3099 (1996).
75. P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, and Michael Grätzel, “Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells”, Journal of the American Chemical Society, 125 (5), 1166 (2003).
76. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, “High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte”, Chemical Communications, 2972 (2002).
77. Li Wang, S. Fang, Y. Lin, X. Zhou and M. Li, “A 7.72% efficient dye sensitized solar cell based on novel necklace-like polymer gel electrolyte containing latent chemically cross-linked gel electrolyte precursors ", Chemical Communications, 5687 (2005).
78. S. Yanagida, “Recent research progress of dye-sensitized solar cells in Japan”, Comptes Rendus Chimie, 9, 597 (2006).
79. S. Uchida, MRS Proceedings, 1211E, R09-04 (2009).
80. Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami, “Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell”, Langmuir, 19, 3572 (2003).
81. Y. Liu, A. Hagfeldt, X. Xiao, and S.E. Lindquist, “Investigation of infuence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell”, Solar Energy Materials and Solar Cells, 55, 267 (1998).
82. H. Kusama, M. Kurashige and H. Arakawa,” Influence of nitrogen-containing heterocyclic additives in I−/I3− redox electrolytic solution on the performance of Ru-dye-sensitized nanocrystalline TiO2 solar cell”, Journal of Photochemistry and Photobiology A: Chemistry, 169, 169 (2005).
83. T. Hoshikawa, T. Ikebe, R. Kikuchi and K. Eguchi, “Effects of electrolyte in dye-sensitized solar cells and evaluation by impedance spectroscopy”, Electrochimica Acta, 51, 5286 (2006).
84. N. Kopidakis, N. R. Neale, and A. J. Frank, “Effect of an Adsorbent on Recombination and Band-Edge Movement in Dye-Sensitized TiO2 Solar Cells: Evidence for Surface Passivation”, Journal of Physical Chemistry B, 110, 12485 (2006).
85. R. Stangl, J. Ferber and J. Luther, “On the modeling of the dye-sensitized solar cell”, Solar Energy Materials and Solar Cells, 54, 255 (1998).
86. W. Kubo, A. Sakamoto, T. Kitamura, Y. Wada and S. Yanagida, “Dye-sensitized solar cells: improvement of spectral response by tandem structure”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 33 (2004).
87. M. Yanagida, N. O. Komatsuzaki, M. Kurashigg, K. Sayama, H. Sugihara, “Optimization of tandem-structured dye-sensitized solar cell”, Solar Energy Materials and Solar Cells, 94, 297 (2010).
88. P. Liska, K. R. Thampi, M. Grätzel, D. Brémaud, D. Rudmann, H. M. Upadhyaya, A. N. Tiwari, “Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency”, Applied Physical Letters, 88, 203103 (2006).
89. H. Arakawa et al., “Performance improvement of 10cm-by-10cm DSC sub-modules”, 3rd International Conference on the Industrialisation of DSC (DSC-IC 09), Nara, Japan (2009).
90. R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F.M. Petrat, A. Prodi-Schwab, P. Lechner, W. Hoffmann, “A glass frit-sealed dye solar cell module with integrated series connections”, Solar Energy Materials and Solar Cells, 90, 1680 (2006).
91. L. Han, A. Fukui, N. Fuke, N. Koide, R. Yamanaka, “High efficiency of dye- sensitized solar cell and module”, Proceedings of the 32nd IEEE Photovoltaic Specialists Conference (PVSC) and Fourth IEEE World Conference on Photovoltaic Energy Conversion (WCPEC), Hawaii, 625 (2006).
92. T. Toyoda, “Challenges toward practical use of dye-sensitized solar cell”, Journal of Japan Solar Energy Society, 31, 19 (2005).
93. E. Figgemeier and A. Hagfeldt, “Are dye-sensitized nano-structured solar cells stable? An overview of device testing and component analyses”, International Journal of Photoengery, 6, 127 (2004).
94. S. T. Martin, H. Herrmann and M. R. Hoffmann, “Time-resolved microwave conductivity. Part 2.—Quantum-sized TiO2 and the effect of adsorbates and light intensity on charge-carrier dynamics”, Journal of the Chemical Society, Faraday Transactions, 90, 3323 (1994).
95. R. J. Forster, E. Figgemeier, A. C. Lees, J. Hjelm, and J. G. Vos, “Photostability, Electrochemistry, and Monolayers of [M(bpy)2(trans-1,2-bis(4-pyridyl)ethylene)L]+ (M = Ru, Os; L = Cl, H2O)”, Langmuir, 16, 7867 (2000).
96. R. Grünwald and H. Tributsch, “Mechanisms of Instability in Ru-Based Dye Sensitization Solar Cells”, The Journal of Physical Chemistry B, 101 (14), 2564 (1997).
97. P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, and M. Grätzel, “Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals”, The Journal of Physical Chemistry B, 107, 14336 (2003).
98. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, “A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells”, Journal of the American Chemical Society, 127, 808 (2005).
99. P. Wang, S.M. Zakeeruddin, R. Humphry-Baker, J.E. Moser, M. Grätzel, “Molecular-Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye-Sensitized Solar Cells”, Advanced Materials, 15, 2101 (2003).
100. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, “Stable ≥ 8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility”, Applied Physical Letters, 86, 123508 (2005).
101. A. Hinsch, J. M. Kroon, R. Kern, I. Uhlendorf, J.Holzbock, A. Meyer, and J. Ferber, “Long-term stability of dye-sensitised solar cells”, Progress in Photovoltaics, 9, 425 (2001).
102. R. Kern, N. Van Der Burg, G. Chmiel, J. Ferber, G. Hasenhindl, A. Hinsch, R. Kinderman, J. Kroon, A. Meyer, T. Meyer, R. Niepmann, J. Van Roosmalen, C. Schill, P. Sommeling, M. Spath, and I. Uhlendorf, “Long term stability of dye- sensitised solar cells for large area power applications”, Opto-Electronics Review, 8, 284 (2000).
103. D. Kuang, C. Klein, Z. Zhang, S. Ito, Jacques-E. Moser, S. M. Zakeeruddin, M. Grätzel, “Stable, High-Efficiency Ionic-Liquid-Based Mesoscopic Dye-Sensitized Solar Cells”, small, 3, 2094 (2007).
104. D. J. Fitzmaurice, M. Eschle, H. Frei, J. Moser, “Time-resolved rise of iodine molecule (1-) upon oxidation of iodide at aqueous titania colloid”, The Journal of Physical Chemistry, 97, 3806 (1993).
105. B. Macht, M. Turrion, A. Barkschat, P. Salvador, K. Ellmer, and H. Tributsch, “Patterns of efficiency and degradation in dye sensitization solar cells measured with imaging techniques”, Solar Energy Materials and Solar Cells, 73, 163 (2002).
106. A. Hauch and A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells”, Electrochimica Acta, 46, 3457 (2001).
107. H. Arakawa, “Toward the Realization of Dye-Sensitized Solar Cell”, 2009 International Symposium of Dye-Sensitized Sloar Cells, Chung-Li, Taiwan (2009).
108. H. Matsui, “Development of highly durable DSC modules”, 3rd International Conference on the Industrialisation of DSC (DSC-IC 09), Nara, Japan (2009).
109. K. Noda, “Recent developments of high performanced DSSC”, 3rd International Conference on the Industrialisation of DSC (DSC-IC 09), Nara, Japan (2009).
110. N. Kato, Y. Takeda, K. Higuchi, A. Takeichi, E. Sudo, H. Tanaka, T. Motohiro, T. Sano and T. Toyoda, “Degradation analysis of dye-sensitized solar cell module after long-term stability test under outdoor working condition”, Solar Energy Materials and Solar Cells, 93, 893 (2009).
111. N. Kato, K. Higuchi, H. Tanaka, J. Nakajima, T. Sano and T. Toyoda, “Improvement in long-term stability of dye-sensitized solar cell for outdoor use”, Solar Energy Materials and Solar Cells, 95, 301 (2011).
112. M. Yaguchi, “Developments of dye-sensitized photoconversion devices for interior equipments”, 3rd International Conference on the Industrialisation of DSC (DSC-IC 09), Nara, Japan (2009).
113. H. Desilvestro, “Tandems - path to higher usable DSC performance”, 3rd International Conference on the Industrialisation of DSC (DSC-IC 09), Nara, Japan (2009).
114. T. Toyoda, T. Sano, J. Nakajima, S. Doi, S. Fukumoto, A. Ito, T. Tohyama, M. Yoshida, T. Kanagawa, T. Motohiro, T. Shiga, K. Higuchi, H. Tanaka, Y. Takeda, T. Fukano, N. Katoh, A. Takeichi, K Takechi, M. Shiozawa, “Outdoor performance of large scale DSC modules”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 203 (2004).
115. N. Tanabe, “Recent Progress in DSC Module Panel Development at Fujikura Ltd.”, 4th International Conference on the Industrialisation of Dye Solar Cells (DSC-IC 2010), Colorado Springs, USA (2010).
116. M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorganic Chemistry, 44, 6841 (2005).
117. R. Kern, R. Sastrawan, J. Ferber, R. Stangl and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions”, Electrochimica Acta, 47, 4213 (2002).
118. L. Han, N. Koide, Y. Chiba, T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Applied Physical Letters, 84, 2433 (2004).
119. T. Hoshikawa, M. Yamada, R. Kikuchi, and K. Eguchi, “Impedance Analysis of Internal Resistance Affecting the Photoelectrochemical Performance of Dye-Sensitized Solar Cells”, Journal of The Electrochemical Society, 152, E68 (2005).
120. Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, and H. Imai, “Characteristics of High Efficiency Dye-Sensitized Solar Cells”, The Journal of Physical Chemistry B, 110, 25210, (2006).
121. Q. Wang, J.-E. Moser, and M. Grätzel, “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells”, The Journal of Physical Chemistry B, 109, 14945 (2005).
122. A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York (2000).
123. J. Bisquert, “Influence of the boundaries in the impedance of porous film electrodes”, Physical Chemistry Chemical Physics, 2, 4185 (2000).
124. J. Bisquert, “Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer” The Journal of Physical Chemistry B, 106, 325 (2002).
125. A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, “Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, The Journal of Physical Chemistry B , 104, 949 (2000).
126. L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, and I. Uhlendorf, “Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells: Characterization by Intensity-Modulated Photocurrent Spectroscopy”, The Journal of Physical Chemistry B, 101, 10281 (1997).
127. G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, and I. Uhlendorf, “Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-Sensitized Nanocrystalline Photovoltaic Cells”, The Journal of Physical Chemistry B, 103, 692 (1999).
128. G. Schlichthörl, S. Y. Huang, J. Sprague, and A. J. Frank, “Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy”, The Journal of Physical Chemistry B, 101, 8141 (1997).
129. J. Krüger, R. Plass, M. Grätzel, P. J. Cameron, and L. M. Peter, “Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells: A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy”, The Journal of Physical Chemistry B, 107, 7536 (2003).
130. L. M. Peter, and K. G. U. Wijayantha, “Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cells”, Electrochimica Acta, 45, 4543 (2000).
131. T. C. Wei, C. C. Wan, Y. Y. Wang, H. H. Tang, United States Patent, Patent No.: US 7,838,065 B2.
132. M. Grätzel, “Dye-sensitized Solar Cell”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 145 (2003).
133. G. E. Tulloch, “Light and Energy- dye solar cells for the 21st century”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 209 (2004).
134. T. N. Murakami, M. Gratzel, “Counter electrodes for DSC: Application of functional materials as catalysts”, Inorganica Chimica Acta, 361, 572 (2008).
135. X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, E. Abe, “Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells”, Thin Solid Films, 472, 242 (2005).
136. N. Papageorgiou, “Counter-electrode function in nanocrystalline photoelectrochemical cell configurations”, Coordination Chemistry Reviews, 248, 1421 (2004).
137. G. Smestad, C. Bignozzi, R. Argazzi, “Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies”, Solar Energy Materials and Solar Cells, 32, 259 (1994).
138. T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi, “Impedance analysis for dye-sensitized solar cells with a three-electrode system”, Journal of Electroanalytical Chemistry, 577, 339 (2005).
139. X. Fang, T. Ma, G. Guan, M. Akiyama, Tetsya Kida, Eiichi Abe, “High-performance carbon counter electrode for dye-sensitized solar cells”, Journal of Electroanalytical Chemistry, 570 257 (2004).
140. E. Ramasamy, W. J. Lee, D. Y. Lee, J. S. Song, “Nanocarbon counterelectrode for dye sensitized solar cells”, Applied Physics Letters, 90, 173103 (2007).
141. J. L. Lan, Y. Y. Wang, C. C. Wan, T. C. Wei, H. P. Feng, C. Peng, H. P. Cheng, Y. H. Chang, W. C. Hsu, “The simple and easy way to manufacture counter electrode for dye-sensitized solar cells”, Current Applied Physics, 10(2), S168 (2009).
142. S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Grätzel, “Control of dark current in photoelectrochemical (TiO2/I−–I3−) and dye-sensitized solar cells”, Chemical Communications, 34, 4351 (2005).
143. S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency”, Progress in Photovoltaics: Research and Applications, 14(7), 589 (2006).
144. P. Wang, S. M. Zakkeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gräztel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”, Nature Material, 2, 402 (2003).
145. T. Kitamura, K. Okada, H. Matsui, N. Tanabe, “Durability of Dye-Sensitized Solar Cells and Modules”, Journal of Solar Energy Engineering, 132, 021105 (2010).
146. S. Ito, H. Matsui, K. Okada, S. Kusano, T. Kitamura, Y. Wada, S. Yanagida, “Calibration of solar simulator for evaluation of dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, 82, 421 (2004).
147. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff, E. C. Pereira, “Doubling Exponent Models for the Analysis of Porous Film Electrodes by Impedance. Relaxation of TiO2 Nanoporous in Aqueous Solution”, The Journal of Physical Chemistry B, 104(10), 2287 (2000).
148. N. Koide, A. Islam, Y. Chiba, L. Han, “Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit”, Journal of Photochemistry and Photobiology A: Chemistry, 182, 296 (2006).
149. A. Luque, S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley and Sons, 2003, pp.676
150. J. van de Lagemaat, N.-G. Park, and A. J. Frank, “Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Electrical Impedance and Optical Modulation Techniques”, The Journal of Physical Chemistry B, 104, 2044 (2000).
151. T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau, M. Graetzel, “Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins”, Angewandte Chemie International Edition, 49, 6646 (2010).
152. F. W. Zhuge, J. J. Qiu, X. M. Li, X. D. Gao, X. Y. Gao, W. D. Yu, “Toward Hierarchical TiO2 Nanotube Arrays for Efficient Dye-Sensitized Solar Cells”, Advanced Materials, 23, 1330 (2011).
153. M. S. Wu, C. H. Tsai, T. C. Wei, “Electrochemical formation of transparent nanostructured TiO2 film as an effective bifunctional layer for dye-sensitized solar cells”, Chemical Communications, 47, 2871 (2011).
154. H. S. Lee, S. H. Bae, Y. Jo, K. J. Kim, Y. Jun, C. H. Han, “A high temperature stable electrolyte system for dye-sensitized solar cells”, Electrochimica Acta, 55, 7159 (2010).
155. E. Ramasamy, W. J. Lee, D. Y. Lee, J. S. Song, “Portable, parallel grid dye-sensitized solar cell module prepared by screen printing”, Jourmal of Power Sources, 165, 446 (2007).
156. L. T. Han, A. Fukui, Y. Chiba, A. Islam, R. Komiya, N. Fuke, N. Koide, R. Yamanaka, M. Shimizu, “Integrated dye-sensitized solar cell module with conversion efficiency of 8.2%”, Applied Physics Letters, 94, 013305 (2009).
157. Y. Jun, J. H. Son, D. Sohn, M. G. Kang, “A module of a TiO2 nanocrystalline dye-sensitized solar cell with effective dimensions”, Journal of Photochemistry and Photobiology A: Chemistry, 200, 314 (2008).
158. Y. Takeda, N. Kato, K. Higuchi, A. Takeichi, T. Motohiro, S. Fukumoto, T. Sano, T. Toyoda, “Monolithically series-interconnected transparent modules of dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, 93, 808 (2009).
159. A. Ubisse, A. Sebitosi, “A new topology to mitigate the effect of shading for small photovoltaic installations in rural sub-Saharan Africa”, Energy Conversion and Management, 50, 1797 (2009).
160. K. Okada, H. Matsui, T. Kawashima, T. Esure, N. Tanabe, “100 mm x 100 mm large-sized dye sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 193 (2004).
161. K. Kaneko, H. Akasaka, Sealing Agent Composition For Dye-sensitized Solar Cell, WO 2010/090145 A1 2010.
162. M. Spath, P. M. Sommeling, J. A. M. van Roosmalen, H. J. P. Smit , N. P. G. van der Burg, D. R. Mahieu , N. J. Bakker , J. M. Kroon, “Reproducible manufacturing of dye-sensitized solar cells on a semi-automated baseline”, Progress in Photovoltatics, 11, 207 (2003).
163. I. Lee, S. Hwang, H. Kim, “Reaction between oxide sealant and liquid electrolyte in dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, 95, 315 (2011).
164. W. J. Lee, E. Ramasamy, D. Y. Lee, J. S. Song, “Glass frit overcoated silver grid lines for nano-crystalline dye sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 183, 133 (2006).
165. J. L. Lan, C. C. Wan, T. C. Wei, W. C. Hsu, Y. H. Chang, “Durability test of PVP-capped Pt nanoclusters counter electrode for highly efficiency dye-sensitized solar cell”, Progress in Photovoltaics: Research and Applications, 2011; n/a, DOI: 10.1002/pip.1107.