簡易檢索 / 詳目顯示

研究生: 郭育銘
Kuo, Yu-Ming
論文名稱: 陽極處理具骨相容彈性模數之β型鈦鈮鉭鋯植體及其宿主細胞與抗菌能力之揭露
Host Cellular and Antibacterial Responses on the Osseocompatible Elastic Modulus β-Ti-28Nb-11Ta-8Zr Implant with Anodic Oxidation
指導教授: 嚴大任
Yen, Ta-Jen
口試委員: 陳三元
Chen, San-Yuan
劉全璞
Liu, Chuan-Pu
王子威
Wang, Tzu-Wei
嚴大任
Yen, Ta-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 62
中文關鍵詞: 陽極氧化表面改質鈦鈮鉭鋯奈米孔洞彈性模數衝擊強度抗腐蝕性銀奈米粒子抗菌綠膿桿菌抗藥性金黃色葡萄球菌骨母細胞
外文關鍵詞: Ti-Nb-Ta-Zr, elastic modulus, impact strength, silver nanoparticles (AgNPs), antibacterial ability, Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aereus (S. aereus), Methicillin-resistant Staphylococcus aureus (MRSA)
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生醫骨植體的演進過程中,由於金屬鈦與其合金擁有最符合骨科植體要求的生物相容性、機械性質及抗腐蝕性質等等,使其成為最適合的材料系統。然而,骨材本身的彈性模數亦扮演了相當重要的角色,骨材與人骨之間的彈性模數若差距過大則易導致骨質鬆脫與骨質再吸收等現象(應力遮蔽效應),像是cp-Ti (~105 GPa) 及Ti-6Al-4V (~112 GPa) 與人骨的彈性模數(~30 GPa) 仍有一段差距,所以為了避免應力遮蔽效應的產生,β相穩定因子(鈮、鉭、鋯)用來參雜鈦金屬(Ti-28Nb-11Ta-8Zr, TNTZ)以降低鈦合金骨材的彈性係數以達到仿骨又不失去生物相容性的特性,並對體液的抗腐蝕性也因此增強了許多。此外,為了模擬骨細胞外基質的奈米孔洞結構,陽極氧化表面改質技術被用來製成高附著性、化學穩定性及粗糙性的非晶奈米孔洞氧化層。再者,為了避免手術過程中及術後的細菌感染,我們合成銀奈米粒子並將其附著於奈米孔洞氧化層上以利手術成功及加速術後傷口癒合。
    首先,我們量測TNTZ的機械性質:彈性模數 (49 GPa)、衝擊強度 (129 J/cm2)、降伏強度 (338 MPa) 及拉伸強度 (422 MPa)。接著藉由X-ray光電質譜儀 (XPS)及掃描式電子顯微鏡 (SEM)進行奈米孔洞表面改質之TNTZ及銀奈米粒子的表面成分及形貌分析。再者我們利用電位極化法檢測TNTZ以及陽極氧化之TNTZ的抗腐蝕性,將其與商用純鈦之抗腐蝕性做比較。最後,訂性的抑菌環及定量的細菌生長曲線觀察被用來檢測載有銀奈米粒子的奈米孔洞TNTZ氧化層能夠抑菌的效率及時間,分別測試綠膿桿菌(P. aeruginosa)以及抗藥性金黃色葡萄球菌(MRSA),抑制效果分別為24 h及12 h。體外骨母細胞培養則被用來觀察細胞增生及生存能力,證實表面改質之TNTZ能夠促進細胞生長。因此,TNTZ合金在生醫領域上是個具有發展潛力的植體。


    Titanium and Ti-based alloys are widely applied in the orthopedic implants due to their qualified biocompatibility, mechanical properties, corrosion resistance and so on. However, the elastic modulus of commercial pure Ti (cp-Ti, ~105 GPa) and Ti-6Al-4V (Ti64, ~112 GPa) are still far larger than that of real bone (4-40 GPa), which easily causes stress-shielding effect and subsequently leads to the bone or implant failure. To avoid this problem, Ti-28Nb-11Ta-8Zr alloy (TNTZ) with a low elastic modulus (49 GPa) is utilized in this study to meet the bone-mimetic condition with improved biocompatibility and corrosion resistance in the environment of simulated body fluid, Hank’s solution. Additionally, to mimic bone extracellular matrix (ECM), the nano-sized porous structure for sturdy cell interlocks was carried out by anodic oxidation (AO). The as-prepared amorphous nanoporous oxides exhibit the characteristics of highly adhesive coatings, chemical inertness and rough surface morphology to serve as the study platform. Concerning with infection issues before and after the surgery, we also proposed an antibacterial agent, Ag nanoparticles (AgNPs), incorporated into the cavities of oxide coatings to assist in surgery success and rapid healing rate.
    Firstly, the mechanical properties of TNTZ were evaluated by measuring Young’s modulus, impact strength, yield and tensile strength. Subsequently, material characteristics of Nanoporous TNTZ oxide coatings (NPTNTZO) with AgNPs were analyzed, including surface morphologies by scanning electron microscopy (SEM) and chemical compositions by X-ray photoelectron spectroscopy (XPS). Thirdly, potentiodynamic polarization method was conducted to test corrosion resistance of TNTZ and AO TNTZ coatings, compared with that of cp-Ti. Finally, in-vitro bacteria tests were practiced to observe the antimicrobial efficacy of as-prepared NPTNTZO/ AgNPs and in-vitro cell tests were utilized to determine the cell viability and proliferation.
    Experimental results indicated that TNTZ possesses lower elastic modulus (49 GPa) than cp-Ti and T64 implants and it still remains high impact strength, yield strength and tensile strength compared with other commonly used bone metals, like stainless steels. Besides, TNTZ and its oxide coatings also improve corrosion resistance compared with titanium and titania coatings. In aspect of surface modification through anodization, different applied voltages can lead to different pore diameters. During the osteoblast culture, size effect is obvious that smaller diameter (<30 nm) is beneficial for cell proliferation and larger diameter (>70 nm) gives the opposite results. Here we chose 65 nm nanopores as reservoir to store AgNPs to precede in-vitro bacteria tests and osteoblast culture, which still maintained certain degrees of cell proliferation and viability (MTT assay and Live/Dead Staining). As for antibacterial tests, qualitative Kirby-Bauer test, inhibited zone observation, reveals that NPTNTZO/ AgNPs effectively inactivate both gram-negative bacteria strains (Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa)) and gram-positive bacteria (Staphylococcus aereus (S. aereus) and Methicillin-resistant Staphylococcus aureus (MRSA)). Quantitative test of antibacterial efficiency was presented by growth curve of P. aeruginosa and MRSA. The efficiency at least reaches 24h and 12h respectively in such a strict environment (high volume of bacteria solution).
    The final MTT assay and Live/Dead Staining show that silver-containing samples (NPTNTZO/ AgNPs) have little cytotoxicity on osteoblast culture under 2.5 mM silver concentration. This study successfully investigates the comprehensive evaluations of material characteristics, in vitro antibacterial tests and cellular activities on the bases of β-Ti-28Nb-11Ta-8Zr bone implant.

    Abstract i Acknowledgement iv Content v List of Figures vii List of Tables ix Chapter 1 Background 1 Chapter 2 Literature Review 3 2.1 Bone Tissue 3 2.2 Criteria of Bone Implant 5 2.2.1 Biocompatibility 5 2.2.2 Mechanical Properties 7 2.2.3 Corrosion and Wear Resistance 9 2.2.4 Osseointegration 11 2.3 Ti-based Alloy Implants and Properties of Surface Modification 12 2.3.1 Titanium Alloys 12 2.3.2 Surface Charge of Hydrated Titanium Dioxide 15 2.3.3 Corrosion Properties and Potentiodynamic Polarization Curve 16 2.3.4 Biological Properties 17 2.4 Titanium Dioxide Nanotubes 18 2.4.1 Nanoporous/ tubular Surface Modification via Anodic Oxidation 19 2.4.2 Size Effect of Nanotube Diameter on Cell Culture 22 2.4.3 Nanotubes as Reservoir for Molecule Elution (Anti-infection Agents) 24 2.5 Motivation 27 Chapter 3 Experimental Procedures 28 3.1 Preparation of Ti-28Nb-11Ta-8Zr (TNTZ) Substrate 28 3.2 Fabrication of Nanoporous TNTZ Oxide Layers (NPTNTZO) 28 3.3 Incorporation of Ag Nanoparticles (AgNPs) 29 3.4 Material Characterizations of TNTZ and NPTNTZO/ AgNPs 30 3.4.1 Charpy Impact Test 30 3.4.2 Tension Test 30 3.4.3 Scanning Electron Microscopy (SEM) 31 3.4.4 X-ray Photoelectron Spectroscopy (XPS) 31 3.4.5 X-ray Diffraction (XRD) 32 3.5 Electrochemical Analysis 33 3.6 Evaluation of Antimicrobial Efficiency 34 3.6.1 Bacteria Culture 35 3.6.2 Kirby-Bauer Test 35 3.6.3 Duration Assay of Antibacterial Ability 35 3.7 In-vitro Cell Tests 36 3.7.1 Human Fetal Osteoblast (hFOB) Culture 36 3.7.2 MTT Assay (Cell Proliferation) 36 3.7.3 “Live/Dead” Staining Assay (Cell Viability) 37 Chapter 4 Results and Discussion 38 4.1 Characteristics of TNTZ and Its Oxide Nanopores 38 4.1.1 Mechanical Properties of TNTZ 38 4.1.2 Morphological Observations 39 4.1.3 Chemical Composition 41 4.1.4 Crystallinity of NPTNTZO 44 4.2 Corrosion Resistance 45 4.3 Antibacterial Efficacy 47 4.3.1 Inhibited Zone Observation 47 4.3.2 Growth Curve of Material-treated Bacteria 48 4.4 Biocompatibility of TNTZ, NPTNTZO and NPTNTZO / AgNPs 50 4.4.1 hFOB Proliferation and Viability on TNTZ, NPTNTZO and NPTNTZO/ AgNPs 50 Chapter 5 Conclusion 53 Reference 54 Appendix 61

    [1] Angier N. Bone, a Masterpiece of Elastic Strength. The New York Times. 2010;4:25.
    [2] Saijo H, Chung U-i, Igawa K, Mori Y, Chikazu D, Iino M, et al. Clinical application of artificial bone in the maxillofacial region. Journal of Artificial Organs. 2008;11:171-6.
    [3] T Miyata TA, M Furuse. Artificial bone. US Patent 4,314,380. 1982.
    [4] Goldenfein J. Injectable artificial bone developed. Medical Futures Innovation Award. 2008.
    [5] Vunjak-Novakovic G. Jaw bone created from stem cells. BBC NEWS. 2009.
    [6] Marcacci M. Turning wood into bones. BBC NEWS. 2010.
    [7] Alvarez K, Nakajima H. Metallic Scaffolds for Bone Regeneration. Materials. 2009;2:790-832.
    [8] Waston RARaML. Collagen-crytsal relationship in bone as seen in the electron microscope. The Anatomical Record. 1953;114:383-92.
    [9] Hayes WC. Biomechanics of cortical and trabecular bone: implication for assessment of fracture risk. New York: Raven Press. 1991.
    [10] Gibson LJ. Cancellous bone. New York: Pergamon Press. 1988.
    [11] Fisher DA, Watts M, Davis KE. Implant position in knee surgery - A comparison of minimally invasive, open unicompartmental and total knee arthroplasty. Journal of Arthroplasty. 2003;18:2-8.
    [12] Koeck FX, Beckmann J, Luring C, Rath B, Grifka J, Basad E. Evaluation of implant position and knee alignment after patient-specific unicompartmental knee arthroplasty. Knee. 2011;18:294-9.
    [13] Jun Y, Choi K. Design of patient-specific hip implants based on the 3D geometry of the human femur. Advances in Engineering Software. 2010;41:537-47.
    [14] Aparicio C, Padros A, Gil F-J. In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests. Journal of the Mechanical Behavior of Biomedical Materials. 2011;4:1672-82.
    [15] Branemark R, Emanuelsson L, Palmquist A, Thomsen P. Bone response to laser-induced micro- and nano-size titanium surface features. Nanomedicine-Nanotechnology Biology and Medicine. 2011;7:220-7.
    [16] H. Serhan MS, T. Albert and S.D. Kwak. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern? The Spine Journal. 2004;4:379-87.
    [17] A.R Vaccaro KS, R. Haid, S. Kitchel, P. Wuisman, W. Taylor, C. Branch and S. Garfin. The use of bioabsorbable implants in the spine. The Spine Journal. 2003;3:227-37.
    [18] Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941-53.
    [19] Pinchuk L, Wilson GJ, Barry JJ, Schoephoerster RT, Parel J-M, Kennedy JP. Medical applications of poly(styrene-block-isobutylene-block-styrene) ("SIBS"). Biomaterials. 2008;29:448-60.
    [20] Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics. 1998;20:92-102.
    [21] Guo XE. Mechanical properties of cortical bone and cancellous tissue. In Bone Mechanics Handbook, 2nd edition. CRC Press. 2001.
    [22] Donald T. Reilly AHB, Victor H. Frankel. The elastic modulus for bone. Journal of Biomechanics. 1974;7:271-2.
    [23] Eckardt I, Hein HJ. Quantitative measurements of the mechanical properties of human bone tissues by scanning acoustic microscopy. Annals of Biomedical Engineering. 2001;29:1043-7.
    [24] Rho JY, Ashman RB, Turner CH. YOUNGS MODULUS OF TRABECULAR AND CORTICAL BONE MATERIAL - ULTRASONIC AND MICROTENSILE MEASUREMENTS. Journal of Biomechanics. 1993;26:111-9.
    [25] Ford CM, Keaveny TM. The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. Journal of Biomechanics. 1996;29:1309-17.
    [26] Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science. 2009;54:397-425.
    [27] Meijerink HJ, van Loon CJM, Malefijt MCdW, van Kampen A, Verdonschot N. A sliding stem in revision total knee arthroplasty provides stability and reduces stress shielding An RSA study using impaction bone grafting in synthetic femora. Acta Orthopaedica. 2010;81:337-43.
    [28] Engh CA, Young AM, Engh CA, Hopper RH. Clinical consequences of stress shielding after porous-coated total hip arthroplasty. Clinical Orthopaedics and Related Research. 2003:157-63.
    [29] Maeda E, Asanuma H, Noguchi H, Tohyama H, Yasuda K, Hayashi K. Effects of stress shielding and subsequent restressing on mechanical properties of regenerated and residual tissues in rabbit patellar tendon after resection of its central one-third. Journal of Biomechanics. 2009;42:1592-7.
    [30] H. Uchida HT, K. Nagashima, Y. Ohba, H. Matsumoto, Y. Toyama and K. Yasuda. Stress deprivation simultaneously induces over-expression of interleukin-lbeta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendone. Journal of Biomechanics. 2005;38:791-8.
    [31] Scholes SC, Unsworth A, Goldsmith AAJ. A frictional study of total hip joint replacements. Physics in Medicine and Biology. 2000;45:3721-35.
    [32] Herberts HMaP. Revision and re-revision rate n THR: a revision-risk study of 1,48,359 primary operations. Scientific exhibition presented at the 65th annual meeting of the American academy of orthopaedic surgeons, New Orleans, USA. 1998:19-23.
    [33] Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. Journal of Biomechanics. 2000;33:1611-8.
    [34] Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science & Engineering R-Reports. 2004;47:49-121.
    [35] Collings EW. The physical metallurgy of titanium alloys: ASM Series in Metal Processing. Edward Arnold Publications. 1984.
    [36] Long M, Rack HJ. Titanium alloys in total joint replacement - a materials science perspective. Biomaterials. 1998;19:1621-39.
    [37] Tang X, Ahmed T, Rack HJ. Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys. Journal of Materials Science. 2000;35:1805-11.
    [38] Niinomi M. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 1998;243:231-6.
    [39] K. Mishra JAD, R.A. Poggie, P. Kovacs and T.J. Fitzgerald. in Medical Application of Titanium and Its Alloys: the Material and Biological Issues. West Conshohocken, ASTM. 1996;1272:96-113.
    [40] Geetha M, Singh AK, Gogia AK, Asokamani R. Effect of thermomechanical processing on evolution of various phases in Ti-Nb-Zr alloys. Journal of Alloys and Compounds. 2004;384:131-44.
    [41] Wang K, Gustavson L, Dumbleton J. THE CHARACTERIZATION OF TI-12MO-6ZR-2FE - A NEW BIOCOMPATIBLE TITANIUM-ALLOY DEVELOPED FOR SURGICAL IMPLANTS1993.
    [42] Teoh SH. Fatigue of biomaterials: a review. International Journal of Fatigue. 2000;22:825-37.
    [43] Y. Song DSX, R. Yang, D. Li, W.T. Wu and Z.X. Guo. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Materials Science and Engineering: A. 1999;260:269-74.
    [44] Li SJ, Yang R, Li S, Hao YL, Cui YY, Niinomi M, et al. Wear characteristics of Ti-Nb-Ta-Zr and Ti-6Al-4V alloys for biomedical applications. Wear. 2004;257:869-76.
    [45] Shibata T, Zhu YC. EFFECT OF FILM FORMATION CONDITIONS ON THE STRUCTURE AND COMPOSITION OF ANODIC OXIDE-FILMS ON TITANIUM. Corrosion Science. 1995;37:253-70.
    [46] Tyler PS, Kozlowski MR, Smyrl WH, Atanasoski RT. PHOTOELECTROCHEMICAL MICROSCOPY AS A PROBE OF LOCALIZED PROPERTIES OF THIN TIO2 FILMS. Journal of Electroanalytical Chemistry. 1987;237:295-302.
    [47] McAleer JF, Peter LM. PHOTOCURRENT SPECTROSCOPY OF ANODIC OXIDE-FILMS ON TITANIUM. Faraday Discussions. 1980;70:67-80.
    [48] Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials. 2002;23:1995-2002.
    [49] Gurrappa I, Reddy DV. Characterisation of titanium alloy, IMI-834 for corrosion resistance under different environmental conditions. Journal of Alloys and Compounds. 2005;390:270-4.
    [50] Bamoulid L, Maurette MT, De Caro D, Guenbour A, Ben Bachir A, Aries L, et al. An efficient protection of stainless steel against corrosion: Combination of a conversion layer and titanium dioxide deposit. Surface & Coatings Technology. 2008;202:5020-6.
    [51] M. Textor CS, V. Frauchiger, S. Tosatti, D.M. Brunette. Titanium in Medicine: Properties and Biological Significance of
    Natural Oxide Films on Titanium and Its Alloys. Springer. 2001:171-230.
    [52] T. Sugimoto MO. Internal Medicine, Ver. 6. AsakuraShoten, Tokyo, Japan. 1995:2004.
    [53] Merritt K, Brown SA. EFFECT OF PROTEINS AND PH ON FRETTING CORROSION AND METAL-ION RELEASE. Journal of Biomedical Materials Research. 1988;22:111-20.
    [54] Williams RL, Brown SA, Merritt K. ELECTROCHEMICAL STUDIES ON THE INFLUENCE OF PROTEINS ON THE CORROSION OF IMPLANT ALLOYS. Biomaterials. 1988;9:181-6.
    [55] Ethridge LLHaEC. Biomaterials- The interfacial problem. Advanced Biomedical Engineering. 1975;5:35-150.
    [56] Sainio N. Corrosion and Electric Corrosion Protection. Tampere Univeristy of Applied Sciences. 2012.
    [57] How to Explain Potentiodynamic Polarization Curve & its Relation to Passivation of Behaviour of Metals: http://srizam-expro.blogspot.tw/2011/03/how-to-explain-potentiodynamic.html. 2011.
    [58] Klinger A, Steinberg D, Kohavi D, Sela MN. Mechanism of adsorption of human albumin to titanium in vitro. Journal of Biomedical Materials Research. 1997;36:387-92.
    [59] Serro AP, Fernandes AC, Saramago B, Lima J, Barbosa MA. Apatite deposition on titanium surfaces - The role of albumin adsorption. Biomaterials. 1997;18:963-8.
    [60] Tamura RN, Oda D, Quaranta V, Plopper G, Lambert R, Glaser S, et al. Coating of titanium alloy with soluble laminin-5 promotes cell attachment and hemidesmosome assembly in gingival epithelial cells: Potential application to dental implants. Journal of Periodontal Research. 1997;32:287-94.
    [61] Collis JJ, Embery G. ADSORPTION OF GLYCOSAMINOGLYCANS TO COMMERCIALLY PURE TITANIUM. Biomaterials. 1992;13:548-52.
    [62] Kane KR, Deheer H, Owens SR, Beebe JD, Swanson AB. ADSORPTION OF COLLAGENASE TO PARTICULATE TITANIUM - A POSSIBLE MECHANISM FOR COLLAGENASE LOCALIZATION IN PERIPROSTHETIC TISSUE. Journal of Applied Biomaterials. 1994;5:353-60.
    [63] P. Vaudaux XC, R. Emch, P. Descouts, D. Lew; G. Heimke, U. Soltész, AJC Lee (Eds. Clinical Implant Materials. Advances in Biomaterials. 1990;9:31.
    [64] Elwing H, Ivarsson B, Lundstrom I. SERUM COMPLEMENT DEPOSITION ON PLATINUM AND TITANIUM-OXIDE SURFACES MEASURED BY ELLIPSOMETRY AT LIQUID SOLID INTERFACE - NOTE. Journal of Biomedical Materials Research. 1987;21:263-7.
    [65] Satriano C, Marletta G, Carnazza S, Guglielmino S. Protein adsorption and fibroblast adhesion on irradiated polysiloxane surfaces. Journal of Materials Science-Materials in Medicine. 2003;14:663-70.
    [66] Anderson JM. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press. 1996.
    [67] Ratner BD. Titanium in Medicine: A Perspective on Titanium Biocompatibility. Springer. 2001:1-12.
    [68] Thomsen P, Larsson C, Ericson LE, Sennerby L, Lausmaa J, Kasemo B. Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. Journal of Materials Science-Materials in Medicine. 1997;8:653-65.
    [69] S. Bauer PS, J. Park, K. von der Mark, C. vonWilmowsky,, K. A. Schlegel FWN, unpublished results.
    [70] Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl. 2011;50:2904-39.
    [71] Mor GK, Varghese OK, Paulose M, Grimes CA. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Adv Funct Mater. 2005;15:1291-6.
    [72] Raja KS, Misra M, Paramguru K. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochimica Acta. 2005;51:154-65.
    [73] Sun L, Zhang S, Sun XW, He X. Effect of electric field strength on the length of anodized titania nanotube arrays. Journal of Electroanalytical Chemistry. 2009;637:6-12.
    [74] Sebastian Bauer JP, Andreas Pittrof,, Klaus von der Mark PS. Preparation, characterization and functionalization
    of nanostructured surfaces. Electrochemical Communication. 2006.
    [75] von Wilmowsky C, Bauer S, Lutz R, Meisel M, Neukam FW, Toyoshima T, et al. In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. J Biomed Mater Res B Appl Biomater. 2009;89:165-71.
    [76] Burridge K, ChrzanowskaWodnicka M. Focal adhesions, contractility, and signaling. Annual Review of Cell and Developmental Biology. 1996;12:463-518.
    [77] Giancotti FG. A Structural View of Integrin Activation and Signaling. Developmental Cell. 2003;4:149-51.
    [78] Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Letters. 2007;7:1686-91.
    [79] Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Chien S, et al. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A. 2009;106:2130-5.
    [80] Bauer S, Park J, Faltenbacher J, Berger S, von der Mark K, Schmuki P. Size selective behavior of mesenchymal stem cells on ZrO2 and TiO2 nanotube arrays. Integrative Biology. 2009;1:525-32.
    [81] Park J, Bauer S, Schmuki P, von der Mark K. Narrow Window in Nanoscale Dependent Activation of Endothelial Cell Growth and Differentiation on TiO2 Nanotube Surfaces. Nano Letters. 2009;9:3157-64.
    [82] Bauer S, Park J, von der Mark K, Schmuki P. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomaterialia. 2008;4:1576-82.
    [83] von der Mark K, Bauer S, Park J, Schmuki P. Another look at "Stem cell fate dictated solely by altered nanotube dimension''. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:E60-E.
    [84] Park J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P. TiO2 Nanotube Surfaces: 15 nm - An Optimal Length Scale of Surface Topography for Cell Adhesion and Differentiation. Small. 2009;5:666-71.
    [85] Clarke M, Bennett M, Littlewood T. Cell death in the cardiovascular system. Heart. 2007;93:659-64.
    [86] Peng L, Mendelsohn AD, LaTempa TJ, Yoriya S, Grimes CA, Desai TA. Long-Term Small Molecule and Protein Elution from TiO2 Nanotubes. Nano Letters. 2009;9:1932-6.
    [87] Murakami A, Arimoto T, Suzuki D, Iwai-Yoshida M, Otsuka F, Shibata Y, et al. Antimicrobial and osteogenic properties of a hydrophilic-modified nanoscale hydroxyapatite coating on titanium. Nanomedicine-Nanotechnology Biology and Medicine. 2012;8:374-82.
    [88] Knetsch MLW, Koole LH. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers. 2011;3:340-66.
    [89] Ramstedt M, Ekstrand-Hammarstrom B, Shchukarev AV, Bucht A, Osterlund L, Welch M, et al. Bacterial and mammalian cell response to poly(3-sulfopropyl methacrylate) brushes loaded with silver halide salts. Biomaterials. 2009;30:1524-31.
    [90] Saji VS, Choe HC, Brantley WA. An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications. Acta biomaterialia. 2009;5:2303-10.
    [91] Kuo SW, Lin HI, Ho JH, Shih YR, Chen HF, Yen TJ, et al. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires. Biomaterials. 2012;33:5013-22.
    [92] Macak JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem-Int Edit. 2005;44:2100-2.
    [93] Seah KHW, Thampuran R, Chen X, Teoh SH. A COMPARISON BETWEEN THE CORROSION BEHAVIOR OF SINTERED AND UNSINTERED POROUS TITANIUM. Corrosion Science. 1995;37:1333-40.
    [94] Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials. 2003;24:263-73.
    [95] Ong KG, Varghese OK, Mor GK, Grimes CA. Numerical simulation of light propagation through highly-ordered titania nanotube arrays: Dimension optimization for improved photoabsorption. Journal of Nanoscience and Nanotechnology. 2005;5:1801-8.
    [96] Karpagavalli R, Zhou A, Chellamuthu P, Nguyen K. Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V. Journal of Biomedical Materials Research Part A. 2007;83A:1087-95.
    [97] Agarwal A, Weis TL, Schurr MJ, Faith NG, Czuprynski CJ, McAnulty JF, et al. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials. 2010;31:680-90.
    [98] Wang J, Wang Z, Guo S, Zhang J, Song Y, Dong X, et al. Antibacterial and anti-adhesive zeolite coatings on titanium alloy surface. Microporous and Mesoporous Materials. 2011;146:216-22.
    [99] Schierholz JM, Lucas LJ, Rump A, Pulverer G. Efficacy of silver-coated medical devices. Journal of Hospital Infection. 1998;40:257-62.
    [100] Product information for RPMI 1640 Formulation. PAALaboratories Ltd.Available from:http://www.atmp-ready.com/products/cell_culture_products/media/ classical_media/rpmi1640/rpmi_1640_formulation.html. 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE