簡易檢索 / 詳目顯示

研究生: 陳廉凱
論文名稱: 幾何與製程參數對於熱壓印製程製作微透鏡陣列的影響
Geometry and Process Effects on the Fabrication of Microlens Array by Thermal Imprinting Process
指導教授: 宋震國
口試委員: 楊申語
洪景華
李永春
陳政寰
傅建中
余沛慈
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 80
中文關鍵詞: 玻璃微透鏡陣列熱壓印製程有限元素法
外文關鍵詞: Glass, Microlens array, Thermal imprinting, Finite element method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在完全發展流理論為基礎之下,本論文利用模擬與實驗的方式來研究熱壓印製程配合微洞狀模具製造非球面玻璃微透鏡陣列。在模擬方面,為了分析微透鏡陣列的成型,本研究建構了一個物理模型,並利用有限元素分析軟體ANSYS與軟體內提供的141流體元素來模擬玻璃微透鏡的壓印過程與玻璃流的充填。在模擬的時候,模具被視為一個剛體,而玻璃材料加熱超過其玻璃轉換溫度時可視為一牛頓黏滯流體。為了了解製程參數與幾何參數對於微透鏡陣列壓印的影響,不同的壓印溫度630K與635K、不同孔徑的微洞狀模具50μm與100μm與不同穴寬節距比的模具0.5與0.25分別被模擬。最後由模擬的結果可知,壓印的溫度、微洞狀模具的孔徑與模具的週期都是影響玻璃微透鏡陣列壓印的重要參數。
    在實驗方面,光學玻璃K-PG375(日本住田公司生產)被採用當做壓印的基板,並分別採用微電鑄技術與微鑽孔技術來製造實驗所需的微洞狀模具。之後利用實驗室自行開發的熱壓印設備進行直徑50μm與100μm微透鏡陣列的壓印實驗,而壓印完的試片透過3D雷射共軛焦顯微鏡、白光干涉儀與掃描式電子顯微鏡做透鏡表面形貌的量測。由實驗的結果說明了,使用同一副微洞狀模具配合不同的壓印參數是可以製作出不同焦距的微透鏡陣列,另外當微透鏡陣列的幾何尺寸愈小時也會增加壓印的難度,而這些實驗的結果與模擬做比較後,可看到兩者具有相近的趨勢。另外本研究也比較了不同製造技術所做出微洞狀模具的壓印結果(微電鑄技術與微鑽孔技術),很明顯可以知道微鑽孔技術目前是不適合用來製作微洞狀模具,除非洞口邊緣嚴重的毛邊問題能夠被解決。最後,透過實驗的結果來分析壓印後微透鏡陣列的均勻性,小面積的壓印是可以得到絕佳的均勻性,因為壓力的分佈在微結構區域中央與邊緣部分的差異會比較小。
    最後,為了提升本論文的品質以及將本研究的內容做一延伸,一些未來工作也在本文的最後一章節被提出來。本研究結合了有限元素法的分析與壓印實驗的探討,相信可以幫助我們深入的去了解製程參數的評估、玻璃微結構的成型能力、玻璃流的填充過程以及壓印後微透鏡陣列的均勻性。


    This thesis presents a simulation and experimental investigation focusing on the fabrication of aspheric glass microlens array using thermal imprinting process with micro-hole molds, and establishes a theoretical model based on the theory of fully developed flow. In the simulation, a physical model for analyzing the formation of microlens array was constructed. The commercial finite element software ANSYS with four-node 141 fluid elements was adopted to model the imprinting process of glass microlenses and represent the glass flow. The mold was viewed as a rigid body and the glass material was regarded as Newtonian viscous flow when heated over the glass transition temperature. In order to realize the process-parameter and geometry-parameter effects on the imprinting of microlens array, six types of cases were simulated, including different imprinting temperatures of 630 and 635 K, hole-diameters of 50 and 100 μm, and duty ratios of 0.5 and 0.25. The simulation results indicated that imprinting temperature, micro-hole diameter, and duty ratio were important parameters to influence the imprinting of microlens array.
    In the experiment, K-PG375 was used as a glass substrate and micro-hole molds were fabricated by electroforming technology and precision micro-drilling. Some experiments were implemented by a self-developed thermal imprinting equipment, including the formation of microlenses with diameters of 50 and 100 μm. The imprinting results were analyzed by 3D confocal laser microscope, white light interferometer, and scanning electron microscope (SEM). The experimental results indicated that various focal lengths of microlens were obtained by using the identical micro-hole mold with specified imprinting conditions and the fabrication of small-size microlens array became difficult as the hole diameter gradually decreased, which showed good agreement with the simulation results. Additionally, comparing the imprinting quality by micro-hole molds fabricated using various technologies, such as electroforming technology and precision micro-drilling process, we can clear know that the micro-drilling process is unsuitable to fabricate micro-hole mold for the imprinting of microlens array unless the serious burr problem around the micro-hole can be resolved. In the analysis of uniformity, small-area imprinting can obtain excellent uniformity because the pressure distribution between the middle and border of micro-pattern area has a slight difference.
    Ultimately, some future works were pointed out in order to enhance the quality of this thesis and extend this study. Combining the FEM analysis and imprinting experiments, this study can assist us in profoundly apprehending numerous issues, such as the estimation of process parameters, the formability of microstructures for glass material, the filling condition of glass flow, and the uniformity after imprinting.

    Abstract Ⅰ Acknowledgement Ⅲ Contents Ⅳ Index of Figures Ⅵ Index of Tables Ⅸ Chapter 1 Introduction 1 1.1 Motivation for this research 1 1.2 Background and literature Review 2 1.2.1 Glass imprinting and applications 2 1.2.2 Numerical simulation 9 1.2.3 Fabrication of glass microlens array 10 1.2.4 Applications of microlens array 14 1.3 Objectives and thesis outline 17 Chapter 2 Fundamental Theories and Numerical Simulation 18 2.1 Properties of glass material 18 2.1.1 Properties 18 2.1.2 Viscosity 21 2.1.3 Material deformation 23 2.2 Material rheology 23 2.3 Numerical simulation 25 2.3.1 Assumptions and physical model 25 2.3.2 Dimensionless parameters 27 2.3.3 Finite element formulation 27 2.3.4 Boundary and initial conditions 29 2.3.5 Simulation parameters 30 Chapter 3 Glass Imprinting Experiments 32 3.1 Experimental procedure 32 3.1.1 Procedure 32 3.1.2 Properties of K-PG375 33 3.2 Mold fabrications 34 3.3 Thermal imprinting equipment 39 3.4 Thermal imprinting process 41 3.5 Measurement 43 3.5.1 SEM 43 3.5.2 3D confocal laser microscope 43 3.5.3 White light interferometer 44 Chapter 4 Results and Discussions 46 4.1 Formation mechanism 46 4.2 Simulation results 47 4.2.1 Flow profile in cavity 47 4.2.2 Process-parameter effects 48 4.2.3 Geometry-parameter effects 49 4.3 Experimental results 52 4.4 Comparison of simulation and experimental results 59 4.5 Adhesion 61 4.6 Imprinting of microlens array by quartz mold 63 Chapter 5 Conclusions and Future Works 66 5.1 Conclusions 66 5.2 Future works 67 References 72 Appendix A 76 Appendix B 79

    [1] 龍文安,“半導體奈米技術,”五南圖書出版公司, 2006.
    [2] Lloyd R. Harriott, “Limits of Lithography,” Proceedings of the IEEE, Vol. 89 (2001), No. 3, pp. 366-374.
    [3] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. of Vacuum and Technology B, Vol. 14 (1996), No. 6, pp. 4129-4133.
    [4] Y. Hirai, K. Kanakugi, T. Yamaguchi, K. Yao, S. Kitagawa, and Y. Tanaka, “Fine pattern fabrication on glass surface by imprint lithography,” Microelectronic Engineering, Vol. 67-68 (2003), pp. 237-244.
    [5] Y. Saotome, K. Imai, and N. Sawanobori, “Microformability of optical glasses for
    precision molding,” J. of Materials Processing Technology, Vol. 140 (2003), pp. 379-384.
    [6] T. Yamaguchi, K. Yao, T. Kanakugi, S. Kitagawa, and Y. Hirai, “Fabrication of Micro Optical Elements on Glass Surface by Imprint Lithography,” Proceeding of SPIE, Vol. 5183 (2003), pp. 163-171.
    [7] Y. Tsubouchi, T. Yamaguchi, K. Yao, S. Kitagawa, and Y. Hirai, “Fabrication of Micro Optical Elements and Bio-chip Patterns on Glass Surface by Imprint Lithography,” Proceeding of SPIE, Vol. 5515 (2004), pp. 81-87.
    [8] M. Takahashi, K. Sugimoto, and R. Maeda, “Nanoimprint of Glass Materials with Glassy Carbon Molds Fabricated by Focus Ion Beam Etching,” Japanese Journal of Applied Physics, Vol. 44 (2005), No. 7B, pp. 5600-5605.
    [9] H. Takabe, M. Kuwabara, M. Komori, N. Fukugami, M. Soma, and T. Kusuura, “Imprinted optical pattern of low-softening phosphate glass,” Optics Letters, Vol. 32 (2007), No. 18, pp. 2750-2752.
    [10] Junji Nishii, “Nano-glass imprinting technology for next generation optical devices,” Proceeding of SPIE, Vol. 6834 (2007), pp. 1-8.
    [11] T. Mori, K. Hasegawa, and T. Hatano, “Surface-relief gratings with high spatial frequency fabricated using direct glass imprinting process,” Optics Letters, Vol. 33 (2008), No. 5, pp. 428-430.
    [12] Y. M. Hung, L. K. Chen, M.C. Cheng, and C. K. Sung, “Fabrication Multi-Channel V-Groove Structures on BK-7 Glass Substrate Using Hot Embossing Process,” Proceeding of ICAM 2010, pp. 218-222.
    [13] I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass,” Optics Letters, Vol. 36 (2011), No. 19, pp. 3882-3884.
    [14] S. W. Youn, H. Takagi, S. C. Park, M. Takahashi, and R. Maeda, “Surface patterning of glass via electrostatic imprinting using a platinum mold,” J. of Nanoscience and Nanotechnology, Vol. 12 (2012), pp. 3181-3185.
    [15] M. Cheng, S. H. Zhang, and J. A. Wert, “Finite element analysis of microimprinting of bulk metallic glasses in supercooled liquid regime,” J. of Materials Science, Vol. 42 (2007), No. 15, pp. 5999-6003.
    [16] Y. C. Tsai, C. H. Hung, and J. C. Hung, “Glass material model for the forming stage of the glass molding process,” J. of Materials Processing Technology, Vol. 20 (2008), pp. 751-754.
    [17] Y. M. Hung, Y. J. Lu, and C. K. Sung, “Microstructure patterning on glass substrate by imprinting process,” Microelectronic Engineering, Vol. 86 (2009), pp. 577-582.
    [18] K. Tada, Y. Kimoto, M. Yasuda, H. Kawata, and Y. Hirai, “Molecular Dynamics Study of Nanoimprinting Lithography for Glass Materials,” Japanese Journal of Applied Physics, Vol. 48 (2009), pp. 06FH13-1-06FH13-3.
    [19] Pekka Savander, “Microlens Arrays Etched into Glass and Silicon,” Optics and Lasers in Engineering, Vol. 20 (1994), pp. 97-107.
    [20] G. C. Firestone, and A. Y. Yi, “Precision compression molding of glass microlenses and microlens arrays – an experimental study,” APPLIED OPTICS, Vol. 44 (2005), pp. 6115-6122.
    [21] Yang Chen, Allen Y Yi, Donggang Yao, Fritz Klocke, and Guido Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. of Micromech. Microeng., Vol. 18 (2008), pp. 1-8.
    [22] Hiroaki Nishiyama, Junji Nishii, Mizue Mizoshiri, and Yoshinori Hirata, “Microlens arrays of high-refractive-index glass fabricated by femtosecond laser lithography,” Applied Surface Science, Vol. 255 (2009), pp. 9750-9753.
    [23] Jeongwon Han, Byung-Kwon Min, and Shinill Kang, “Micro forming of glass microlens array using an imprinted and sintered tungsten carbide micro mold,” International J. Modern Physics B, Vol. 22 (2008), pp. 6051-6056.
    [24] Harutaka Mekaru, Tomoyuki Tsuchida, Jun-ichi Uegaki, Manabu Yasui, Michiru Yamashita, and Masaharu Takahashi, “Micro lens imprinted on Pyrex glass by using amorphous Ni-P alloy mold,” Microelectronic Engineering, Vol. 85 (2008), pp. 873-876.
    [25] Sung-Il Chang, Jun-Bo Yoon, Hongki Kim, Jin-Jong Kim, Baik-Kyu Lee, and Dong Ho Shin, “Microlens array diffuser for a light-emitting diode backlight system,” OPTICS LETTERS, Vol. 31 (2006), No. 20, pp. 3016-3018.
    [26] Miao He, Jing Bu, Xiaocong Yuan, Hanben Niu, and Xiang Peng, “Hyperboloid solgel microlens array fabricated by soft-lithography for optical coupling,” Proceeding of SPIE, Vol. 6126 (2006), pp. 61260O-1-61260O-8.
    [27] Hongmin Kim, Gibong Jeong, Young-Joo Kim, and Shinill Kang, “Design and fabrication of aspheric microlens array for optical read-only-memory card system,” Japanese Journal of Applied Physics, Vol. 45 (2006), No. 8B, pp. 6708-6712.
    [28] Ju-Nan Kuo, Chia-Chun Hsieh, Sung-Yi Yang, and Gwo-Bin Lee, “An SU-8 microlens array fabricated by soft replica molding for cell counting applications,” J. of Micromechanics and Microengineering, Vol. 17 (2007), pp. 693-699.
    [29] Wen-Bin Young, “Analysis of the nanoimprinting lithography with a viscous model,” Microelectronic Engineering, Vol. 77 (2005), pp. 405-411.
    [30] Graham LW Cross, “The production of nanostructures by mechanical forming,” J. Phys. D: Appl. Phys., Vol. 39 (2006), pp. 363-386.
    [31] Horst Scholze, “Glass-Nature, Structure, and Properties,” Springer-Verlag publishing, 1991
    [32] J. Hlavac, “The Technology of Glass and Ceramics An Introduction,” Elsevier Sci. publishing, 1983
    [33] D. R. Uhlmann and N. J. Kreidl, “Glass Science and Technology,” Academic Press publishing, 1986
    [34] Robert H. Doremus, “Glass Science,” John Wiley & Sons Inc. publishing, 1994
    [35] 泉谷徹郎 著,“ 光學玻璃 ”, 復漢出版社印行, 2001.
    [36] 邱標麟 譯,“ 玻璃製造學 ”, 復文書局, 2002.
    [37] William D. Callister, “Material Science and Engineering An Introduction,” John Wiley & Sons Inc. publishing, 2003
    [38] J. M. Haile, “Molecular Dynamics Simulation – Elementary Methods,” Wiley Interscience publishing, 1997.
    [39] Wilhelm Flugge, “Viscoelasticity,” Springer-Verlag publishing, 1975
    [40] Alan S. Wineman and K. R. Rajagopal, “Mechanical Response of Polymers,” Cambridge University publishing, 2000
    [41] 周光泉、劉孝敏, “ 黏彈性理論 ” ,中國科學技術大學出版社,1996
    [42] 林昭仁, “ 薄膜流技術 ” ,高立圖書公司,2005
    [43] 徐佩弦, “ 高聚物流變學及其應用 ” ,化學工業出版社,2003
    [44] Bruce R. Munson, Donald F. Young, and Theodore H Okiishi, “Fundamentals of fluid mechanics,” John Wiley & Sons Inc. publishing, 2006
    [45] I. M. Smith and D. V. Griffith, “Programming the Finite Element Method,” John Wiley & Sons Inc. publishing, 1998
    [46] 許洋、黨沙沙、胡仁喜, “ ANSYS 11.0/FLOTRAN流場分析實例指導教程 ” ,機械工業出版社,2009
    [47] Sumita Optical Glass, “Optical Glass Data Book,” 2007, pp. 102.
    [48] http: // www.jeol.co.jp/en/
    [49] http://www.hi.helsinki.fi/amu/AMU%20Cf_tut/cf_tut_part1-9.htm
    [50] http: // www.hoskin.qc.ca/uploadpdf/Instrumentation/Keyence/hoskin_vk_9700
    [51] http://mdl.pme.nthu.edu.tw/NTHU_PME_lab_CHT/index.html
    [52] Eugene Hecht, “OPTICS,” Addison Wesley publishing, 2002.
    [53] Yoshihiko Hirai, Takaaki Konishi, Takashi Yoshikawa, and Satoshi Yoshida, “Simulation and experimental study of polymer deformation in nanoimprint lithography,” J. of Vacuum Science Technology B, Vol. 22 (2004), No. 6, pp. 3288-3293.

    [54] Xiangming Li, Yucheng Ding, Jinyou Shao, Hongzhong Liu, and Hongmiao Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” OPTICS LETTERS, Vol. 36 (2011), No. 20, pp. 4083-4085.
    [55] Ying-Jia Lu, “Theoretical and Experimental Study on Formation of Glass Micron Structures by Using Imprinting Process,” National Tsing Hua University Master Thesis, 2008.
    [56] Yu-Min Hung, “The Study of Glass Micro/Nanostructure Formation by Imprinting Process,” National Tsing Hua University PhD. Thesis, 2009.
    [57] 辛企明, 孫雨南, 謝敬輝,“近代光學製造技術,”國防工業出版社,1997.
    [58] 王連發, 趙墨硯, “光學玻璃工藝學,” 兵器工業出版社, 1993.
    [59] 曹志峰, “特種光學玻璃,” 兵器工業出版社, 1993.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE