簡易檢索 / 詳目顯示

研究生: 蔣天福
Tian-Fu Chiang
論文名稱: 自組裝金粒子六角網狀陣列製備、零維及一維矽基奈米結構成長之研究
Growth of Zero- and One-dimensional Si-based Nanostructures on Self-assembled Hexagonal Au Particle Networks
指導教授: 陳力俊
Lih-Juann Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 125
中文關鍵詞: 自組裝奈米結構氧化矽奈米線選擇性成長
外文關鍵詞: self-assembled, nanostructure, SiOx nanowire, preferred growth, Si
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來一維奈米結構受到很多研究人員的注意,主要是因為其特殊的性質以及將來可能在微電子與光電元件方面的應用。本研究主要著重在自組裝金粒子六角網狀陣列上成長矽以及氧化矽奈米線及其成長機制、鈦金屬在矽奈米線上熱處理臨場觀察、以及非晶質矽鍺薄膜的結晶行為。利用場發射掃描式電子顯微鏡、穿透式電子顯微鏡、以及電腦模擬程式Vienna ab initio simulation package 來作為本研究觀測分析研究的工具。
    首先,在氮氣的氣氛下可以在不同基材(Al2O3 (0001)、Si (111))上製備自組裝金粒子六角網狀陣列,將這金粒子陣列當作奈米線的催化劑。接著,將兩種粉末(純矽加上二氧化矽粉末、純矽粉末)當作固態來源放置於爐管高溫區(1200 度) ,利用氣相傳送的方式,在置於爐管低溫區(900 度)的金粒子陣列上氧化矽奈米線。成長是在Ar氣氛下,經過3-5個小時而完成的。
    利用純矽加上二氧化矽粉末當作固態來源的條件下,經過5 個小時的成長,在Al2O3 (0001)基材的金粒子陣列發現了特殊的形貌--奈米線會選擇性生成在金粒子的某些截面上。實驗發現金粒子的{111}方面族的截面會平行Al2O3 (0001)基材,而這些截面是不會成長奈米線,而奈米線會選擇性成長在有高分佈梯階(ledges)的截面上。然而如果利用純矽粉末,就不會有這樣的現象。這個結果同樣可以利用first-principle total energy以及molecular dynamics的計算與模擬得到。這種選擇性成長的機制對於之後將自組裝金粒子六角網狀陣列的應用設計有很大的幫助。
    如果是在Si (111)基材上,情形又會有所不同。金粒子仍是很好的催化劑,所有的氧化矽奈米線都是選擇性的成長在有金粒子的地方,但是,金粒子的截面會消失,整個金粒子會趨向球型。在成長奈米線900 度下,氣氛中的矽蒸氣與基材中的矽原子會溶入金粒子而形成金矽(Au-Si)的液滴,這液滴會持續的溶入氣氛中的矽原子,進而達到飽和的狀態,矽奈米線就因此生成。因為爐管中的氧氣氧化奈米線,最後觀測到的奈米線為氧化矽奈米線。
    將氧化矽加上石墨粉末當作固態來源,合成出直徑約30 nm、長度可以超過10 μm的矽奈米線,在超高真空(ultrahigh vacuum)的環境,鍍上鈦金屬,利用電子顯微鏡來做臨場實驗,對鈦金屬在單根矽奈米線系統的相變化過程進行研究。
    實驗結果顯示,矽奈米線在室溫鍍上鈦金屬以後,會有非晶質層的產生。而經過400、600、700 度的退火後,Ti5Si3、Ti5Si4、C49-TiSi2等鈦矽合金相分別產生,這些結晶相大多在矽奈米線的表面發現。而經過800 度高溫退火後,整根矽奈米線也轉變為C49-TiSi2鈦矽合金奈米線,但是儘管退火溫度達到850 度,C49-TiSi2鈦矽合金奈米線也沒有轉變為C54-TiSi2,這樣的現象可能是因為矽奈米線有比較少的成核點濃度,增加相轉換的困難,所以造成C49-與C54-TiSi2鈦矽合生成溫度比在薄膜系統下來的緩慢。
    透過高分辨電子顯微鏡配合Auto-correlation function的分析,發現在剛成長完的非晶質矽鍺薄膜中,存在中等規則排列的結構與奈米晶粒。同時也在一系列的觀察發現,在非晶質矽鍺薄膜裡面的奈米晶粒,其濃度會隨著退火溫度有所變化,在退火溫度在300到350 度之間,奈米晶粒的濃度會隨溫度的增加而減少;相反的,在退火溫度400到 450 度之間,奈米晶粒的濃度會隨溫度的增加而增加,這樣的結晶行為可以用自由能隨退火溫度的變化來加以解釋。


    The growth mechanism of SiOx nanowire on the self-assembled hexagonal Au particle networks has been investigated. Self-assembled hexagonal networks with discrete Au particles on different substrates were generated in samples annealed under N2 flow. A vapor transport process was used for the growth of SiOx nanowires. Two kinds of solid sources were used in this work: (1) high purity Si powder (purity 99.96 %) mixed with approximately 50 wt. % SiO2 powder (Si + SiO2); and (2) high purity Si powder only. These powders were placed in an alumina boat as the source material and positioned at the high-temperature (1200 0C) zone of a tube furnace. Ar gas was used as the carrier gas. The nanowires were grown onto Al2O3 (00•1) and Si (111) substrates located at the low-temperature (900 0C) zone of the furnace. After 3-5 hr of reaction, SiOx nanowires were found to grow on the Au particles. The resulting samples were characterized by scanning electron microscopy, transmission electron microscopy. The simulations were performed with the Vienna ab initio simulation package, using the non-normconserving ab initio Vanderbilt pseudopotentials method.
    On Al2O3 (00•1) substrate, preferred growth of SiOx nanowires on patterned facetted Au particles has been achieved with Si + SiO2 as the solid source after annealing at 900 0C for 5 hr. The {111} facets of Au particles were found to be parallel to the Al2O3 substrate and free from nanowire growth. On the other hand, SiOx nanowires were found to grow on {001} facets with a high density of ledges on the surface. Furthermore, nanowires were found to grow on all over the Au particles when pure Si was used as the solid source. The results are consistent with those obtained by the first-principle total energy and molecular dynamics computation and simulation. The preferred growth may be exploited to grow silica nanowires controllably in designated directions.
    On the Si (111) substrate, the nanowires grew selectively on the Au particles. The facets of Au particle tended to disappear and the Au particle became more spherical after nanowire growth. Nanowires were grown selectively on spherical Au particles on Si (111). The Si atoms in the vapor and from the substrate could be incorporated into Au particle to form Au-Si liquid droplet on Si (111) substrate at 900 0C. The liquid droplet continued to dissolve the Si atoms from the vapor and became saturated to induce the growth of Si nanowires selectively on Au particles. Subsequently, the Si nanowires were oxidized to grow the amorphous Si oxide nanowires. Therefore, the nanowires grown at Au particle network on Si substrate were designated as SiOx nanowires.
    The phase formation sequence of Ti on a single SiNW during heat treatment in ultrahigh vacuum has been studied by in-situ TEM observation and HRTEM examination.
    A SiNW with a diameter of about 30 nm and a length of more than 10 μm was obtained by using SiO + C powders as solid source. Amorphous layer was observed in the SiNW after Ti deposition in UHV-TEM at room temperature. The Ti5Si3, Ti5Si4 and C49-TiSi2 were found to appear near the surface of the SiNW annealed at 400, 600 and 700 0C, respectively.
    After annealing at 800 0C, the whole SiNW transformed to C49-TiSi2 nanowire. For C49-TiSi2 nanowires annealed up to 850 0C, no C54-TiSi2 phase was found. The reduced density of nucleation sites on the SiNW was thought to be the main reason for the retarded transformation of C49- and C54-TiSi2 phase.
    The existence of medium-range ordering structures or nanocrystallites in as-deposited amorphous SiGe thin films has been demonstrated by high resolution transmission electron microscopy in conjunction with auto-correlation function analysis. The density of nanocrystallites decreases in amorphous SiGe samples annealed at 300-350 0C then increases in samples annealed at 400-450 0C with annealing temperature. The observations can be interpreted in terms of free energy change with annealing temperature.

    Contents Contents I Acknowledgments V List of Acronyms and Abbreviations VII Abstract IX Chapter 1. Introduction for Nanotechnology 1-1 Nanoscale science and technology 1 1-2 Self assembly 2 1-3 One-dimensional (1D) nanostructures 4 1-4 1D semiconductor and semiconductor oxide nanostrucutres 5 1-5 Silicon nanowires 6 1-6 Silica nanowires 8 1-7 1D functional oxide nanostructures 9 1-7-1 Zinc oxide (ZnO) nanowires, nanobelts and nanorods 10 1-7-2 Tin oxide (SnO2) nanowires and nanobelts 10 1-7-3 Indium oxide (In2O3) nanowires 11 1-7-4 Gallium oxide (Ga2O3) nanowires 12 1-8 Zero-dimensional semicondutor nanostructures 12 Chapter 2. Growth Mechanism and Synthesis Method of Nanowires 2-1 The strategy for one-dimensional grwoth 13 2-2 Vapor-liquid-solid growth mechanism 14 2-3 Solution-liquid-solid growth mechanism 16 2-4 Vapor-solid growth mechanism 17 2-5 Oxide-assisted growth mechanism 18 2-6 Solid-liquid-solid growth mechanism 20 2-7 Vapor phase evaporation 21 Chapter 3. Synthesis of Two-Dimensional Nano Array of Catalyst Metal Particles 3-1 The strategy for synthesis of two-dimensional (2D) nano array of catalyst metal particles 23 3-2 Self-assembled hexagonal Au particle networks 24 3-3 Nanosphere lithography 25 Chapter 4. Experimental Procedures 4-1 Preparation of Au nanoparticle solution 28 4-2 Synthesis of self-assembled hexagonal Au particle network 29 4-3 Sample preparation by nanosphere lithography 29 4-4 Synthesis of Si and SiOx nanowires 30 4-5 Sample preparation for transmission electron microscope (TEM) observation 4-5-1 Planview specimen preparation 31 4-5-2 Cross-sectional specimen preparation 31 4-6 Scanning electron microscope (SEM) observation 33 4-7 Transmission electron microscope observation 33 4-8 Energy dispersive Spectrometer (EDS) analysis 34 4-9 Vienna ab initio simulation package 35 Chapter 5. Growth of SiOx Nanowires on Self-Assembled Hexagonal Au Particle Networks 5-1 Motivation 36 5-2 Experimental Procedures 37 5-2-1 Fabrication procedure for self-assembled hexagonal Au particle network 37 5-2-2 Synthesis and observation of SiOx nanowires 37 5-3 Results and Discussion 38 5-3-1 SiOx nanowires grown on the self-assembled hexagonal Au particle network on Al2O3 (00•1) substrate 38 5-3-2 SiOx nanowires grown on the self-assembled hexagonal Au particle network on Si (111) substrate 39 5-4 Summary and Conclusions 41 Chapter 6. Preferred Growth of Amorphous SiOx Nanowires on Patterned Facetted Au Particles 6-1 Motivation 42 6-2 Experimental Procedures 42 6-2-1 Fabrication procedure for self-assembled hexagonal Au particle network 42 6-2-2 Synthesis and observation of SiOx nanowires 43 6-2-3 Molecular dynamics simulation 44 6-3 Results and Discussion 44 6-3-1 Preferred growth of nanowires 44 6-3-2 Growth orientation identification 45 6-3-3 Chemical compositions identification 45 6-3-4 Random growth of nanowires 46 6-3-5 Different morphology of Au particle 47 6-3-6 Simulation of the interaction of vapor molecular with the Au particles 47 6-3-7 Mechanism of preferred growth of SiOx nanowires 49 6-4 Summary and Conclusions 50 Chapter 7. In-situ Observation of Phase Formation of Ultrahigh Vacuum Deposited Titanium on Silicon Nanowires 7-1 Motivation 52 7-2 Experimental Procedures 53 7-2-1 Synthesis of Si nanowires 53 7-2-2 Sample preparation for in-situ TEM experiment 53 7-2-3 In-situ TEM observation for Ti silicide/Si nanowire 54 7-3 Results and Discussion 54 7-3-1 SiNW observation and Ti deposition 54 7-3-2 In-situ observation of phase formation of Ti on SiNW at low temperatures 55 7-3-3 In-situ observation of the morphology variation of Ti on SiNW at high temperatures 56 7-3-4 Comparison with Ti/Si thin film system 57 7-4 Summary and Conclusions 58 Chapter 8. Auto-Correlation Function Analysis of Crystallization in Amorphous SiGe Thin Films 8-1 Motivation 59 8-2 Experimental Procedures 60 8-2-1 Fabrication of procedure for SiGe thin film 60 8-2-2 ACF analysis for SiGe thin film 60 8-3 Results and Discussion 61 8-3-1 ACF analysis of SiGe thin films 61 8-3-2 Structural transitions in SiGe thin films during annealing 62 8-3-3 Crystallizations in different Ge concentration of SiGe thin films 63 8-4 Summary and Conclusions 63 Chapter 9. Summary and Conclusions 9-1 Growth of SiOx Nanowires on Self-Assembled Hexagonal Au Particle Networks 65 9-2 Preferred Growth of Amorphous SiOx Nanowires on Patterned Facetted Au Particles 65 9-3 In-situ Observation of Phase Formation of Ultrahigh Vacuum Deposited Titanium on Silicon Nanowires 66 9-4 Auto-Correlation Function Analysis of Crystallization in Amorphous SiGe Thin Films 67 Chapter 10. Future Prospects 10-1 Preferred Growth of Nanowires at Facetted Au Particles on MgO(100) Substrate 68 10-2 Growth of Si Nanowires on Patterned Gold Particle Networks by Using Nanosphere Lithography 68 10-3 In-situ Observation of Phase Formation of Titanium Silicide Nanowire 69 References 70 Figure Captions 91 Figures 96 Publications List 120

    References

    Chapter 1
    1. A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, 933-937 (1996).
    2. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000).
    3. J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. deJongh, “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature 375, 767-769 (1995).
    4. K. K. Likharev and T. Claeson, “Single Electronics,” Sci. Am. 266, 80-85 (1992).
    5. G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, “Architectonic Quantum Dot Solids,” Acc. Chem. Res. 32, 415-423 (1999).
    6. M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, “Resonant Tunneling of Electrons via 20 nm Scale InAs Quantum Dot and Magnetotunneling Spectroscopy of its Electronic States,” Appl. Phys. Lett. 70, 105-107 (1996).
    7. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science 286, 1550-1552 (1999).
    8. C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, “Electronic Transport in Y-Junction Carbon Nanotubes,” Phys. Rev. Lett. 85, 3476-3479 (2000).
    9. M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “Nanowire Resonant Tunneling Diodes,” Appl. Phys. Lett. 81, 4458-4460 (2002).
    10. J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on Silicon Nanoelectronics for Terascale Integration,” Science 293, 2044-2049 (2001).
    11. C. M. Lieber, “The Incredible Shrinking Circuit,” Sci. Am. 285(3), 58-65 (2001).
    12. V. Balzani, A. Credi, and M. Venturi, “The Bottom-Up Approach to Molecular-Level Devices and Machines,” Chem. Eur. J. 8, 5524-5532 (2002).
    13. K. E. Drexler, “Engines of Creation, The Coming Era of Nanotechnology,” Anchor Press, New York (1986).
    14. K. E. Drexler, “Machine-Phase Nanotechnology,” Sci. Am. 285(3), 74-75 (2001).
    15. G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295, 2418-2421 (2002).
    16. C. Joachim, J. K. Gimzewski, and A. Aviram, “Electronics Using Hybrid-Molecular and Mono-Molecular Devices,” Nature 408, 541-548 (2000).
    17. C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart and J. R. Heath, “A [2]Catenane-Based Solid State Electronically Reconfigurable Switch,” Science 289, 1172-1175 (2000).
    18. M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour, “Molecular Random Access Memory Cell,” Appl. Phys. Lett. 78, 3735-3737 (2001).
    19. D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A Single-Electron Transistor Made from A Cadmium Selenide Nanocrystal,” Nature 389, 699-701 (1997).
    20. M. H. Devoret and R. J. Schoelkopf, “Amplifying Quantum Signals with The Single-Electron Transistor,” Nature 406, 1039-1047 (2000).
    21. S. Iijima, “Helical Microtube of Graphitic Carbon,” Nature 354, 56-58 (1991).
    22. C. Dekker, “Carbon Nanotubes as Molecular Quantum Wires,” Phys. Today 52(5), 22-28 (1999).
    23. Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon,” Science 281, 973-975 (1998).
    24. Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods,” Science 285, 1719-1722 (1999).
    25. J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    26. Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291, 851-853 (2001).
    27. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks,” Science 294, 1313-1317 (2001).
    28. W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction,” Science 277, 1287-1289 (1997).
    29. J. Hu, L. Li, W. Yang, L. Manna, L. Wang, and A. P. Alivisatos, “Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods,” Science 292, 2060-2063 (2001).
    30. W. I. Park, G. C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15, 526-529 (2003).
    31. P. G. Collins and P. Avouris, “Nanotubes for Electronics,” Sci. Am. 283(6), 62-69 (2000).
    32. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics,” Nature 415, 617-620 (2002).
    33. Y. Cui, X. Duan, J. Wang, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires,” J. Phys. Chem. B 104, 5213-5216 (2000).
    34. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature 409, 66-69 (2001).
    35. M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires,” J. Phys. Chem. B 105, 4062-4064 (2001).
    36. X. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12, 298-302 (2001).
    37. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors,” Nano Lett. 3, 149-152 (2003).
    38. G. F. Zheng, W. Lu, S. Jin, and C. M. Lieber, “Synthesis and Fabrication of High-Performance N-type Silicon Nanowire Transistors,” Adv. Mater. 16, 1890-1893 (2004).
    39. Y. Cui, Q. Weir, H. Park, and C. M. Lieber, ”Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science 293, 1289-1292 (2001).
    40. G. D. Sanders and Y. C. Chang, “Theory of Optical Properties of Quantum Wires in Porous Silicon,” Phys. Rev. B 45, 9202-9213 (1992).
    41. D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct Evidence of Quantum Confinement from the Size Dependence of the Photoluminescence of Silicon Quantum Wires,” Phys. Rev. B 59, R2498-R2501 (1999).
    42. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 287, 1471-1473 (2000).
    43. A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208-211 (1998).
    44. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 58, R16024-R16026 (1998).
    45. D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled Growth of Oriented Amorphous Silicon Nanowires via A Solid-Liquid-Solid (SLS) Mechanism,” Physica E 9, 305-309 (2001).
    46. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence From Defect Centers in High-Purity Silica Glasses Observed Under 7.9-eV Excitation,” Phys. Rev. B 45, 586-591 (1992).
    47. L. S. Liao, X. M. Bao, X. Q. Zheng, N. S. Li, and N. B. Min, “Blue Luminescence from Si+ Implanted SiO2 Films Thermally Grown on Crystalline Silicon,” Appl. Phys. Lett. 68, 850-852 (1996).
    48. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous Silica Nanowires: Intensive Blue Light Emitters,” Appl. Phys. Lett. 73, 3076-3078 (1998).
    49. X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, and J. J. Du, “Preparation and Photoluminescence Properties of Amorphous Silica Nanowires,” Chem. Phys. Lett. 336, 53-56 (2001).
    50. G. W. Meng, X. S. Peng, Y. W. Wang, C. Z. Wang, X. F. Wang, and L. D. Zhang, “Synthesis and Photoluminescence of Aligned SiOx Nanowire Arrays,” Appl. Phys. A 76, 119-121 (2003).
    51. S. Kar and S. Chaudhuri, “Catalytic and Non-Catalytic Growth of Amorphous Silica Nanowires and Their Photoluminescence Properties,” Solid State Commun. 133, 151-155 (2005).
    52. Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation,” Adv. Funct. Mater. 13, 9-24 (2003).
    53. Z. L. Wang and Z. C. Kang, Functional and Smart Materials, Plenum, New York, 1998.
    54. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, ”Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
    55. M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts,” J. Phys. Chem. B 107, 659-663 (2003).
    56. W. I. Park, G. C. Yi, J. W. Kim, and S. M. Park, “Schottky Nanocontacts on ZnO Nanorod Arrays,” Appl. Phys. Lett. 82, 4358-4360 (2003).
    57. Y. Zhang, A. Kolmakov, Y. Lilach, and M. Moskovits, “Electronic Control of Chemistry and Catalysis at the Surface of an Individual Tin Oxide Nanowire,” J. Phys. Chem. B 109, 1923-1929 (2005).
    58. Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser Ablation Sythesis and Electron Transport Studies of Tin Oxide Nanowires,” Adv. Mater. 15, 1754-1757 (2003).
    59. E. Comini, G. Faglia, and G. Sberveglieri, Z. W. Pan, and Z. L. Wang, “Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide nanobelts,” Appl. Phys. Lett. 81, 1869-1871 (2002).
    60. C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han, and C. W. Zhou, “In2O3 Nanowires as Chemical Sensors,” Appl. Phys. Lett. 82, 1613-1615 (2003).
    61. C. Li, W. Fan, B. Lei, D. H. Zhang, S. Han, T. Tang, X. L. Liu, Z. Q. Liu, S. Asano, M. Meyyappan, J. Han, and C. W. Zhou, “Multilevel Memory Based on Molecular Devices,” Appl. Phys. Lett. 84, 1949-1951 (2004).
    62. C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic Synthesis and Photoluminescence of β-Ga2O3 Nanowires,” Appl. Phys. Lett. 78, 3202-3204 (2001).
    63. E. Comini, G. Faglia, and G. Sberveglieri, “UV Light Activation of Tin Oxide Thin Films for NO2 Sensing at Low Temperatures,” Sensors & Actuators B 78, 73-77 (2001).
    64. Y. Shigesato, S. Takaki, and T. Haranoh, “Electrical and Structural Properties of Low Resistivity Tin-Doped Indium Oxide Films,” J. Appl. Phys. 71, 3356-3364 (1992).
    65. M. Ogita, N. Saika, Y. Nakanishi, and Y. Hatanaka, “Ga2O3 Thin Films for High-Temperature Gas Sensors,” Appl. Surf. Sci. 142, 188-191 (1999).
    66. X. N. Liu, X. W. Wu, X. M. Bao, and Y. L. He, “Photoluminescence from Nanocrystallites Embedded in Hydrogenated Amorphous Silicon Films Prepared by Plasma Enhanced Chemical Vapor Deposition,” Appl. Phys. Lett. 64, 220-222 (1994).
    67. S. Sato, S. Nozaki, H. Morisaki, and M. Iwase, “Tetragonal Germanium Films Deposited by the Cluster-Beam Evaporation Technique,” Appl. Phys. Lett. 66, 3176-3178 (1995).
    68. S. Oda, “NeoSilicon Materials and Silicon Nanodevices,” Materials Science and Engineering B 1-3, 19-23 (2003).

    Chapter 2
    1. F. J. Himpsel, T. Jung, A. Kirakosian, J. L. Lin, D. Y. Petrovykh, H. Rauscher, and J. Viernow, “Nanowires by Step Decoration,” MRS BULLETIN 24, 20-24 (1999).
    2. H. J. Dai, E. W. Wong, Y. Z. Yz, S. S. Fan, and C. M. Lieber, “Synthesis and Characterization of Carbide Nanorods,” Nature 375, 769-772 (1995).
    3. C. R. Martin, “Nanomaterials - A Membrane-Based Synthetic Approach,” Science 266, 1961-1966 (1994).
    4. J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    5. R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, 89-90 (1964).
    6. J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction,” J. Vac. Sci. Technol. B 15, 554-557 (1997).
    7. A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208-211 (1998).
    8. Y. Y. Wu and P. D. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, 605-607 (2000).
    9. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen “Catalytic Growth and Characterization of Gallium Nitride Nanowires,” J. Am. Chem. Soc. 123, 2791-2798 (2001).
    10. Z. H. Wu, X. Y. Mei, D. Kim, M. Blumin, and H. E. Ruda, “Growth of Au-Catalyzed Ordered GaAs Nanowire Arrays by Molecular-Beam Epitaxy,” Appl. Phys. Lett. 81, 5177-5179 (2002).
    11. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature 409, 66-69 (2001).
    12. Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, “Catalytic Growth and Photoluminescence Properties of Semiconductor Single-Crystal ZnS Nanowires,” Chem. Phys. Lett. 357, 314-318 (2002).
    13. X. C. Wu and Y. R. Tao, “Growth of CdS Nanowires by Physical Vapor Deposition,” J. Cryst. Growth 242, 309-312 (2002).
    14. M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. 13, 113-116 (2001).
    15. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous Silica Nanowires: Intensive Blue Light Emitters,” Appl. Phys. Lett. 73, 3076-3078 (1998).
    16. W. E. Buhro, K. M. Hickman, and T. J. Trentler, “Turning Down the Heat on Semiconductor Growth: Solution-Chemical Syntheses and the Solution-Liquid-Solid Mechanism,” Adv. Mater. 8, 685-688 (1996).
    17. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 287, 1471-1473 (2000).
    18. Y. H. Yang, C. X. Wang, B. Wang, N. S. Xu, and G. W. Yang, “ZnO Nanowire and Amorphous Diamond Nanocomposites and Field Emission Enhancement,” Chem. Phys. Lett. 403, 248-251 (2005).
    19. M. C. Johnson, C. J. Lee, E. D. Bourret-Courchesne, S. L. Konsek, S. Aloni, W. Q. Han, and A. Zettl, “Growth and Morphology of 0.80 eV Photoemitting Indium Nitride Nanowires,” Appl. Phys. Lett. 85, 5670-5672 (2004).
    20. K. H. Lee, S. W. Lee, R. R. Vanfleet, and W. Sigmund, “Amorphous Silica Nanowires Grown by the Vapor-Solid Mechanism,” Chem. Phys. Lett. 376, 498-503 (2003).
    21. C. Kawai and A. Yamakawa, “Crystal Growth of Silicon Nitride Whiskers Through a VLS Mechanism Using SiO2-Al2O3-Y2O3 Oxides as Liquid Phase,” Ceram. Int. 24, 135-138 (1998).
    22. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 Nanowires Prepared by Physical Evaporation,” Solid State Comm. 109, 677-682 (1999).
    23. S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, “Semiconductor Nanowires from Oxides,” J. Mater. Res. 14, 4503- (1999).
    24. Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Germanium Nanowires Sheathed with An Oxide Layer,” Phys. Rev. B 61, 4518-4521 (2000).
    25. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 58, R16024-R16026 (1998).
    26. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Microstructures of Gallium Nitride Nanowires Synthesized by Oxide-Assisted Method,” Chem. Phys. Lett. 345, 377-380 (2001).
    27. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Oxide- Assisted Growth and Optical Characterization of Gallium-Arsenide Nanowires,” Appl. Phys. Lett. 78, 3304-3306 (2001).
    28. J. Q. Hu, X. L. Ma, Z. Y. Xie, N. Wong, C. S. Lee, and S. T. Lee, “Characterization of Zinc Oxide Crystal Whiskers Grown by Thermal Evaporation,” Chem. Phys. Lett. 344, 97-100 (2001).
    29. H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett. 323, 224-228 (2000).
    30. D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism,” Physica E 9, 305-309 (2001).
    31. A. P. Levitt, Whisker Technology, John Wiley & Sons, Inc. 25 (1970).
    32. D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, “Silicon Nano-Wires Synthesized Using Simple Physical Evaporation,” Appl. Phys. Lett. 72, 3458-3460 (1998).
    33. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “UV-Emitting ZnO Nanowires Synthesizes by A PVD Approach,” Appl. Phys. Lett. 78, 407-409 (2001).

    Chapter 3
    1. Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods,” Science 285, 1719-1722 (1999).
    2. Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled using Silicon Nanowire Building Blocks,” Science 291, 851-853 (2001).
    3. J. Hu, L. Li, W. Yang, L. Manna, L. Wang, and A. P. Alivisatos, “Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods,” Science 292, 2060-2063 (2001).
    4. T. Ito and S. Okazaki, “Pushing the Limits of Lithography,” Nature 406, 1027-1031 (2000).
    5. H. I Smith and M. L. Schattenburg, “X-Ray-Lithography, from 500 to 30 nm - X-Ray Nanolithography,” IBM J. Res. Dev. 37, 319-329 (1993).
    6. J. A. Stroscio and D. M. Eigler, “Atomic and Molecular Manipulation with the Scanning Tunneling Microscope,” Science 254, 1319-1326 (1991).
    7. R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “"Dip-pen" Nanolithography,” Science 283, 661-663 (1999).
    8. G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295, 2418-2421 (2002).
    9. C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105, 5599-5611 (2001).
    10. J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction,” J. Vac. Sci. Technol. B 15, 554-557 (1997).
    11. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 287, 1471-1473 (2000).
    12. P. Y. Su, J. C. Hu, S. L. Cheng, L. J. Chen, and J. M. Liang, “Self-Assembled Hexagonal Au Particle Networks on Silicon From Au Nanoparticle Solution,” Appl. Phys. Lett. 84, 3480-3482 (2004).
    13. J. Fink, C. J. Kiely, D. Bethell, and D. J. Schiffrin, “Self-Organization of Nanosized Gold Particles,” Chem. Mater. 10, 922-926 (1998).
    14. C. Stowell and B. A. Korgel, “Self-Assembled Honeycomb Networks of Gold Nanocrystals,” Nano Lett. 1, 595-600 (2001). “
    15. J. C. Hu, P. Y. Su, V. Lapeyronie, S. L. Cheng, M. Y. Lin, and L. J. Chen, “Self-Assembled Au Nanoparticle Superlattice via a Displacement Reaction,” J. Electron. Mater. 33, 1058-1063 (2004).
    16. M. Maillard, L. Motte, A. T. Ngo, and M. P. Pileni, “Rings and Hexagons Made of Nanocrystals: A Marangoni Effect,” J. Phys. Chem. B 104, 11871-11877 (2000).
    17. S. A. Harfenist, Z. L. Wang, M. M. Alvarez, I. Vezmar, and R. L. Whetten, “Highly Oriented Molecular Ag Nanocrystal Arrays,” J. Phys. Chem. 100, 13904-13910 (1996).
    18. M. P. Zach, K. H. Ng, and R. M. Penner, “Molybdenum Nanowires by Electrodeposition,” Science 290, 2120-2123 (2000).
    19. J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, “Laser-Focused Atomic Deposition,” Science 262, 877-880 (1993).
    20. H. W. Deckman and J. H. Dunsmuir, “Natural Lithography,” Appl. Phys. Lett. 41, 377-379 (1982).
    21. U. C. Fischer and H. P. Zingsheim, “Sub-microscopic Pattern Replication with Visible-Light,” J. Vac. Sci. Technol. 19, 881-885 (1981).
    22. J. C. Hulteen and R. P. van Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surface,” J. Vac. Sci. Technol. 13, 1553-1558 (1995).

    Chapter 4
    1. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of Thiol Derivatised Gold Nanoparticles in A Two-Phase Liquid/Liquid System,” J. Chem. Soc., Chem. Commun. 801-805 (1994).
    2. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse Cde (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115, 8706-8715 (1993).
    3. T. T. Sheng and C. C. Chang, “Transmission Electron Microscopy of Cross Section of Large Scale Integrated Circuits,” IEEE Trans. Electron Devices, ED-23, 531-553 (1976).
    4. G. Kresse and J. Hafner, “Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium,” Phys. Rev. B 49, 14251-14269 (1994).
    5. P. Pulay, “Convergence Acceleration of Iterative Sequences. The Case of SCF Iteration,” Chem. Phys. Lett. 73, 393-398 (1980).

    Chapter 5
    1. Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods,” Science 285, 1719-1722 (1999).
    2. J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    3. J. Hu, L. Li, W. Yang, L. Manna, L. Wang, and A. P. Alivisatos, “Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods,” Science 292, 2060-2063 (2001).
    4. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous Silica Nanowires: Intensive Blue Light Emitters,” Appl. Phys. Lett. 73, 3076-3078 (1998).
    5. Z. H. Wu, X. Y. Mei, D. Kim, M. Blumin, and H. E. Ruda, “Growth of Au-Catalyzed Ordered GaAs Nanowire Arrays by Molecular-Beam Epitaxy,” Appl. Phys. Lett. 81, 5177-5179 (2002).
    6. B. J. Ohlsson, M. T. Bjork, M. H. Magnusson, K. Deppert, L. Samuelson, and L. R. Wallenberg, “Size-, Shape-, and Position-Controlled GaAs Nano-Whiskers,” Appl. Phys. Lett. 79, 3335-3337 (2001).
    7. T. Mårtensson, M. Borgström, W. Seifert, B. J. Ohlsson, and L. Samuelson, “Fabrication of Individually Seeded Nanowire Arrays by Vapour–Liquid–Solid Growth,” Nanotechnology 14, 1255-1258 (2003).
    8. G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295, 2418-2421 (2002).
    9. C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Toll for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105, 5599-5611 (2001).
    10. P. Y. Su, J. C. Hu, S. L. Cheng, L. J. Chen, and J. M. Liang, “Self-Assembled Hexagonal Au Particle Networks on Silicon From Au Nanoparticle Solution,” Appl. Phys. Lett. 84, 3480-3482 (2004).
    11. J. J. Wu, T. C. Wong, and C. C. Yu, “Growth and Characterization of Well-Aligned nc-Si/SiOx Composite Nanowires,” Adv. Mater. 14, 1643-1646 (2002).
    12. Y. J. Chen, J. B. Li, and J. J. Dai, “Si and SiOx Nanostructures Formed via Thermal Evaporation,” Chem. Phys. Lett. 344, 450-456 (2001).
    13. G. W. Meng, X. S. Peng, Y. W. Wang, C. Z. Wang, X. F. Wang, and L. D. Wang, “Synthesis and Photoluminescence of Aligned SiOx Nanowire Arrays,” Appl. Phys. A 76, 119-121 (2003).

    Chapter 6
    1. P. Y. Su, J. C. Hu, S. L. Cheng, L. J. Chen, and J. M. Liang, “Self-Assembled Hexagonal Au Particle Networks on Silicon From Au Nanoparticle Solution,” Appl. Phys. Lett. 84, 3480-3482 (2004).
    2. G. Kresse and J. Hafner, “Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium,” Phys. Rev. B 49, 14251-14269 (1994).
    3. Z. L. Wang, “Structural Analysis of Self-Assembling Nanocrystal Superlattices,” Adv. Mater. 10, 13-30 (1998).
    4. Z. L. Wang, “New Developments in Transmission Electron Microscopy for Nanotechnology,” Adv. Mater. 18, 1497-1514 (2003).
    5. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires From Silicon Oxide,” Phys. Rev. B 58, R16024-R16026 (1998).
    6. H. Bialas and K. Heneka, “Epitaxy of FCC Metals on Dielectric Substrates,” Vacuum 45, 79-87 (1994).
    7. Y. J. Chen, J. B. Li, and J. J. Dai, “Si and SiOx Nanostructures Formed via Thermal Evaporation,” Chem. Phys. Lett. 344, 450-456 (2001).
    8. G. W. Meng, X. S. Peng, Y. W. Wang, C. Z. Wang, X. F. Wang, and L. D. Wang, “Synthesis and Photoluminescence of Aligned SiOx Nanowire Arrays,” Appl. Phys. A 76, 119-121 (2003).

    Chapter 7
    1. J. P. Gambino and E. G. Colgan, “Silicides and Ohmic Contacts,” Mater. Chem. Phys. 52, 99-146 (1998).
    2. W. Lur and L. J. Chen, “Interfacial Reactions of Titanium Thin Films on BF2+-Implanted (001)Si,” J. Appl. Phys. 66, 3604-3611 (1989).
    3. M. H. Wang and L. J. Chen, “Phase Formation in the Interfacial Reactions of Ultrahigh Vacuum Deposited Titanium Thin Films on (111)Si,” J. Appl. Phys. 71, 5918-5925 (1992).
    4. Z. He, M. Stevens, D. J. Smith, and P. A. Bennent, “Epitaxial Titanium Silicide Islands and Nanowires,” Surf. Sci. 524, 148-156 (2003).
    5. M. Stevens, Z. He, D. J. Smith, and P. A. Bennent, “Structure and Orientation of Epitaxial Titanium Silicide Nanowires Determined by Electron Microdiffraction,” J. Appl. Phys. 93, 5670-5674 (2003).
    6. C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers, and D. R. Evans, “Directed Growth of Nickel Silicide Nanowires,” Appl. Phys. Lett. 84, 1389-1391 (2004).
    7. C. P. Li, N. Wang, S. P. Wong, C. S. Lee, and S. T. Lee, “Metal Silicide/Silicon Nanowires from Metal Vapor Vacuum Arc Implantation,” Adv. Mater. 14, 218-221 (2002).
    8. C. P. Li, X. H. Sun, N. B. Wong, C. S. Lee, S. T. Lee, and B. K. Teo, “Silicon Nanowires Wrapped with Au Film,” J. Phys. Chem. B 106, 6980-6984 (2002).
    9. W. Lur and L. J. Chen, “Growth Kinetics of Amorphous Interlayer Formed by Interdiffusion of Polycrystalline Ti Thin-Film and Single-Crystal Silicon,” Appl. Phys. Lett. 54, 1217-1219 (1989).
    10. M. H. Wang and L. J. Chen, “Identification of the First Nucleated Phase in the Interfacial Reactions of Ultrahigh Vacuum Deposited Titanium Thin Films on Silicon,” Appl. Phys. Lett. 58, 463-465 (1991).
    11. L. J. Chen, S. L. Cheng, S. M. Chang, and H. Y. Huang, “Auto-Correlation Function Analysis of Amorphous Interlayers in Ti/Si Systems,” Materials Science in Semiconductor Processing 4, 237-240 (2001).
    12. Z. Ma and L. H. Allen, “Kinetic Mechanisms of the C49-to-C54 Polymorphic Transformation in Titanium Disilicide Thin Films: A Microstructure-Scaled Nucleation-mode Transition,” Phys. Rev. B 49, 13501-13511 (1994).

    Chapter 8
    1. D. E. Polk and D. S. Boudreaux, “Tetrahedrally Coordinated Random-Network Structure,” Phys. Rev. Lett. 31, 92-95 (1973).
    2. F. Wooten, D. Weaire, and K. Winer, “Computer-Generation of Structural Models of Amorphous Si and Ge,” Phys. Rev. Lett. 54, 1392-1395 (1985).
    3. J. C. Phillips, J. C. Bean, B. A. Wilson, and A. Ourmazd, “Bragg-Diffraction by Amorphous-Silicon,” Nature 325, 121-125 (1987).
    4. J. M. Gibson and M. M. J. Treacy, “Diminished Medium-Range Order Observed in Annealed Amorphous Germanium,” Phys. Rev. Lett. 78, 1074-1077 (1997).
    5. M. M. J. Treacy, J. M. Gibson, and P. J. Keblinski, “Paracrystallites Found in Evaporated Amorphous Tetrahedral Semiconductors,” J. Non-Cryst. Solids 231, 99-110 (1998).
    6. P. Viscor, “Structure and The Existence of The 1ST Sharp Diffraction Peak in Amorphous-Germanium Prepared in UHV and Measured Insitu,” J. Non-Cryst. Solids 97-98, 179-182 (1987).
    7. S. R. Elliott, “The Origin of The 1st Sharp Diffraction Peak in The Structure Factor of Covalent Glasses and Liquids,” J. Phys. Condens. Matter. 4, 7661-7678 (1992).
    8. O.L. Krivanek, P.H. Gaskell and A. Howie, “Seeing Order in Amrphous Materials,” Nature 262, 454-457 (1976).
    9. S. L. Cheng, H. H. Lin, J. H. He, T. F. Chiang, C. H. Yu, L. J. Chen, C. K. Yang, D. Y. Wu, S. C. Chien and W. C. Chen, “Evolution of Structural Order in Germanium Ion-Implanted Amorphous Silicon Layers,” J. Appl. Phys. 92, 910-913 (2002).
    10. L. J. Chen, S. L. Cheng, C. H. Yu, P. Y. Su, H. H. Lin and K. S. Chi, “Structural Evolution in Amorphous Silicon and Germanium Thin Films,” J. Microsc. Microanal. 8, 268-273 (2002).
    11. P. Kringhøj and R. G. Elliman, “Solid-Phase Epitaxial Crystallization of Strain-Relaxed Si1-XGeX Alloy Layers,” Phys. Rev. Lett. 73, 858-861 (1994).
    12. S. Y. Shiryaev, M. Fyhn and A. N. Larsen, “Solid-Phase Epitaxy of Relaxed, Implantation-Amorphized Si1-XGeX Alloy Layers Grown on Compositionally Graded Buffers,” Appl. Phys. Lett. 63, 3476-3478 (1993).
    13. J. Frank, Computer Processing of Electron Microscopy Images (Springer, Berlin, 1980), p. 187.
    14. C. Spinella, S. Lombardo, and S. U. Campisano, “Early Stages of Grain-Growth in Ion-Irradiated Amorphous-Silicon,” Phys. Rev. Lett. 66, 1102-1105 (1991).
    15. L. Pauling, Nature of the Chemical Bond (Cornell Univ. Press, Ithaca, New York, 1960).

    Chapter 10
    1. H. Bialas and K. Heneka, “Epitaxy of FCC Metals on Dielectric Substrates,” Vacuum 45, 79-87 (1994).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE