簡易檢索 / 詳目顯示

研究生: 楊梓若
Yang, Tzu-Jo
論文名稱: 利用漩渦輔助式液液微萃取技術量測真實樣品中的鍶
Determination of strontium in real samples by vortex-assisted liquid–liquid microextraction
指導教授: 吳劍侯
Wu, Chien-Hou
孫毓璋
Sun, Yuh-Chang
口試委員: 蔡翠玲
Tsai, Tsui-Ling
王竹方
Wang, Chu-Fang
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 71
中文關鍵詞: 漩渦式輔助液液微萃取真實樣品
外文關鍵詞: Vortex-assisted liquid–liquid microextraction, Strontium, Real samples
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鍶在環境中的濃度極低,美國疾病管制局將其列為一種毒化物,因鍶的化性與
    鈣相似,要直接量測環境中的鍶不易,因此開發一靈敏且具選擇性的量測鍶方法,
    對環境保護及人體危害是非常重要的。漩渦輔助式液液微萃取(vortex-assisted liquid–
    liquid microextraction, VALLME) 是一種快速且具選擇性的前處理技術。在萃取過程
    中,使用不同碳長鏈的直鏈醇進行溶劑的研究,其結果顯示碳鏈較短的醇類有較好
    的萃取效果。雖然正丁醇及正己醇擁有較好的萃取效果,但因溶劑與水具互溶性,
    進行萃取時需耗費較大體積的有機溶劑。鑒於水溶性與萃取效果,選擇辛醇作為此
    系統的萃取溶劑。真實樣品量測的最佳化條件如下:在50 mL 的樣品中添加輔助離
    子3 mM 四苯硼酸納(sodium tetraphenylborate, NaTPB)後加入400 μL 含有5 mM 冠
    狀醚(4',4''(5'')-di-(tert-butylcyclohexano)-18-crown-6, DtBuCH18C6)的辛醇作為萃取溶
    劑,在手搖10 秒、vortex 1 分鐘後,以3200 rcf 離心5 分鐘。最後使用0.1M HNO3
    進行反萃取步驟,稀釋到合適的pH 值再注入到離子層析儀(ion chromatography, IC)
    分析。在最佳化條件下,偵測極限(detection limit)可達0.67 μg L-1。此方法已應用在
    量測奶茶、牙膏、海帶及昆布中的鍶離子。


    The strontium has low concentration in the environment, listed by U.S Centers for
    Disease Control and Prevention (CDC) as a poison. Because chemical property of
    strontium is similar to calcium, it’s difficult to directly measure strontium, therefore, the
    development of a sensitive method for the analysis of strontium is important for human
    health protection and environmental safety. Vortex-assisted liquid–liquid microextraction
    (VALLME) is a potential sample pretreatment technique for strontium analysis. In the
    extraction system, 1-butanol, 1-hexanol, 1-octanol, 1-decanol and 1-dodecanol were used
    as extraction solvents to study the effect of carbon chain length of alcohols in the system.
    The results indicate that the extraction efficiency is inversely proportional to the carbon
    chain length. Although 1-butanol and1-hexanol exhibit better extraction efficiency,
    additional amount of solvent is required in order to have sufficient extraction volume for
    collection. Due to solvent miscibility, solubility and extraction efficiency, 1-octanol was
    used as extraction solvent in which dissolved 4',4''(5'')-di-(tert-butylcyclohexano)-18-
    crown-6 (DtBuCH18C6) was used as selective reagent and sodium tetraphenylborate
    (NaTPB) was added as a counter anion in the extraction system. Strontium in organic
    phase was stripped with 0.1 M nitric acid back to aqueous solution and determined by ion
    chromatography. The optimum microextraction conditions were as follows: 50 mL
    aqueous samples with 3 mM tetraphenylborate; 400 μL of 1-octanol as the extractant
    phase with 5 mM DtBuCH18C6; vortex extraction time for 60 sec; centrifugation at 3200
    relative centrifugal force (rcf) for 5 min. Under optimum conditions, the detection limit
    for strontium was 0.67 μg L-1. The method has been applied to the analysis of strontium
    in milk tea, toothpastes and kelps.

    摘要 ..................................................................................................................................... I ABSTRACT ....................................................................................................................... Ⅱ 謝誌 .................................................................................................................................. IⅡ 目錄 .................................................................................................................................. IV 圖目錄 .............................................................................................................................. VI 表目錄 .......................................................................................................................... VIIII 第一章 前言 ....................................................................................................................... 1 1.1 簡介 ...................................................................................................................................................... 1 1.2 研究動機 .............................................................................................................................................. 1 第二章 文獻回顧 ............................................................................................................... 3 2.1 鍶的重要性 .......................................................................................................................................... 3 2.2 鍶的量測方法 ...................................................................................................................................... 5 2.2.1 樣品前處理 ................................................................................................................................... 5 2.2.1.1 固體樣品……………..……………………………………………………………………5 2.2.1.2 液體樣品……..……………………………………………………………………………6 2.2.2 儀器分析....................................................................................................................................... 6 2.3 冠狀醚 .................................................................................................................................................. 8 2.4 萃取 .................................................................................................................................................... 10 2.4.1 傳統萃取法 ................................................................................................................................. 10 2.4.1.1 固相萃取法……………………………………………………………………………….10 2.4.1.2 液相萃取法……………………………………………………………………………….10 2.4.2 微萃取法..................................................................................................................................... 11 2.4.2.1 單滴液相微萃取………………………………………………………………………….11 2.4.2.2 分散式液液微萃取……………………………………………………………………….13 2.4.2.3 漩渦輔助式液液微萃取………………………………………………………………….15 第三章 研究方法 ............................................................................................................. 16 3.1 實驗裝置 ............................................................................................................................................ 16 3.1.1 高效率離子層析儀(HPIC) ........................................................................................................ 16 3.1.2 離心機........................................................................................................................................ 16 3.1.3 漩渦混和機 ................................................................................................................................ 17 V 3.1.4 其他儀器..................................................................................................................................... 17 3.2 實驗藥品 ............................................................................................................................................ 17 3.2.1 實驗藥品..................................................................................................................................... 17 3.2.2 藥品配製..................................................................................................................................... 18 3.3 真實樣品 ............................................................................................................................................ 19 3.3.1 液體樣品前處理 ......................................................................................................................... 19 3.3.2 固體樣品前處理 ......................................................................................................................... 20 3.4 實驗分析流程 .................................................................................................................................... 20 3.4.1 漩渦輔助液液微萃取步驟 ......................................................................................................... 20 3.4.2 加大體積VALLME 步驟 .......................................................................................................... 21 第四章 結果與討論 ......................................................................................................... 22 4.1 不同溶劑的萃取效果 ........................................................................................................................ 22 4.1.1 有機溶劑萃取體積量 ................................................................................................................. 24 4.1.2 不同溶劑對輔助離子的影響 ..................................................................................................... 27 4.1.3 不同溶劑對冠狀醚的影響 ......................................................................................................... 28 4.1.4 鈣、鎂離子對萃取的影響 ......................................................................................................... 29 4.2 加大體積的條件探討 ........................................................................................................................ 31 4.2.1 添加有機相體積最大化 ............................................................................................................. 31 4.2.2 Vortex 時間最佳化 ..................................................................................................................... 32 4.2.3 離心時間最佳化 ......................................................................................................................... 33 4.2.4 輔助離子條件最佳化 ................................................................................................................. 35 4.2.5 冠狀醚萃取劑條件最佳化 ......................................................................................................... 36 4.3 分析方法確效 .................................................................................................................................... 39 4.3.1 不同樣品體積的偵測極限 ......................................................................................................... 39 4.3.2 使用VALLME 方法比較 .......................................................................................................... 41 4.4 真實樣品分析 .................................................................................................................................... 42 4.4.1 奶茶樣品..................................................................................................................................... 43 4.4.2 牙膏樣品..................................................................................................................................... 45 4.4.3 海帶、昆布樣品 ......................................................................................................................... 47 第五章 結論 ..................................................................................................................... 55 第六章 未來展望 ............................................................................................................. 56 參考文獻 ........................................................................................................................... 56 附錄一 醇與水互溶實驗結果圖...................................................................................... 65 附錄二 標準添加法真實樣品檢量線 ............................................................................. 66 附錄三 放射性鍶的萃取流程.......................................................................................... 70

    Amr, M. A.; Helal, A. F. I.; Al-Kinani, A. T.; Balakrishnan, P. Ultra-trace
    determination of Sr-90, Cs-137, Pu-238, Pu-239, and Pu-240 by triple
    quadruple collision/reaction cell-ICP-MS/MS: Establishing a baseline for
    global fallout in Qatar soil and sediments. J. Environ. Radioact. 2016, 153, 73-
    87.
    Arnaud-Neu, F.; Delgado, R.; Chaves, S. Critical evaluation of stability constants and
    thermodynamic functions of metal complexes of crown ethers (IUPAC
    Technical Report). Pure Appl. Chem. 2003, 75, 71─102.
    57
    Bartley, J. C.; Reber, E. F. Toxic effects of stable strontium in young pigs. J. Nutr.
    1961, 75, 21─28.
    Bath, G. E.; Thorrold, S. R.; Jones, C. M.; Campana, S. E.; McLaren, J. W.; Lam, J.
    W. H. Strontium and barium uptake in aragonitic otoliths of marine fish.
    Geochim. Cosmochim. Acta 2000, 64, 1705─1714.
    Batinic-Haberle, I.; Crumbliss, A. L. Influence of the anion on the stability of secondsphere
    coordination of ferrioxamine B with dicyclohexano-18-crown-6. Inorg.
    Chem. 1995, 34, 928─932.
    Berton, P.; Martinis, E. M.; Wuilloud, R. G. Development of an on-line temperatureassisted
    ionic liquid dispersive microextraction system for sensitive
    determination of vanadium in environmental and biological samples. J.
    Hazard. Mater. 2010, 176, 721─728.
    Burguera, M.; Burguera, J. L.; Rondon, C.; di Bernardo, M. L.; Gallignani, M.; Nieto,
    E.; Salinas, J. Appraisal of different electrothermal atomic absorption
    spectrometric methods for the determination of strontium in biological
    samples. Spectroc. Acta Pt. B-Atom. Spectr. 1999, 54, 805─818.
    Chen, Z.; Wu, Y.; Wei ,Y. Z. Adsorption characteristics and radiation stability of a
    silica-based DtBuCH18C6 adsorbent for Sr(II) separation in HNO3 medium.
    J. Radioanal. Nucl. Chem. 2014, 299, 485─491.
    Curzon, M. E.; Spector, P. C. Enamel mottling in a high strontium area of the U.S.A.
    Community Dent. Oral Epidemiol. 1977, 5, 243─247.
    Dai, X. X.; Cui, Y. H.; Kramer-Tremblay, S. A rapid method for determining
    strontium-90 in urine samples. J. Radioanal. Nucl. Chem. 2013, 296,
    363─368.
    Dai, X. X.; Kramer-Tremblay, S. Five-column chromatography separation for
    simultaneous determination of hard-to-detect radionuclides in water and swipe
    samples. Anal. Chem. 2014, 86, 5441─5447.
    Dalai, T. K.; Sarin, M. Trace determination of strontium and barium in river waters by
    inductively coupled plasma-atomic emission spectrometry using an ultrasonic
    nebulizer. Geostand. Newsl. 2002, 26, 301─306.
    de Carvalho, R. C.; Netto, A. D. P.; Marques, F. F. D. Simultaneous determination of
    strontium ranelate and aspartame in pharmaceutical formulation for the
    treatment of postmenopausal osteoporosis by capillary zone electrophoresis.
    Microchem. J. 2014, 117, 214─219.
    Denardo, G. L. The 85Sr scintiscan in bone disease. Ann. Intern. Med. 1966, 65, 44─53.
    Demond, A. H.; Llndner, A. S. Estimation of Interfacial Tension between Organic
    Liquids and Water. Environ. Sci. Technol. 1993, 27, 2318─2331
    Desmartin, P.; Kopajtic, Z.; Haerdi, W. Radiostrontium-90 (Sr-90) ultra-traces
    measurements by coupling ionic chromatography (HPIC) and on line liquid
    scintillation counting (OLISC). Environ. Monit. Assess. 1997, 44, 413─423.
    Ema, M.; H. Hara; Matsumoto, M.; Hirose, A.; Kamata, E. Evaluation of
    developmental toxicity of 1-butanol given to rats in drinking water throughout
    pregnancy. Food Chem. Toxicol. 2005, 43, 325─331.
    Feuerstein, J.; Boulyga, S. F.; Galler, P.; Stingeder, G.; Prohaska, T. Determination of
    Sr-90 in soil samples using inductively coupled plasma mass spectrometry
    equipped with dynamic reaction cell (ICP-DRC-MS). J. Environ. Radioact.
    2008, 99, 1764─1769.
    Furukawa, M.; Takagi, K.; Matsunami, H.; Komatsuzaki, Y.; Kawakami, T.; Shinano,
    T.; Takagai, Y. Rapid quantification of radioactive strontium-90 in fresh foods
    via online solid-Phase extraction-inductively coupled plasma-dynamic
    reaction cell-mass spectrometry and its comparative evaluation with
    conventional radiometry. ACS Omega 2019, 4, 11276─11284.
    Grahek, Z.; Zecevic, N.; Lulic, S. Possibility of rapid determination of low-level Sr-
    90 activity by combination of extraction chromatography separation and
    Cherenkov counting. Anal. Chim. Acta 1999, 399, 237─247.
    Gros, N.; Camoes, M. F.; Oliveira, C.; Silva, M. C. R. Ionic composition of seawaters
    and derived saline solutions determined by ion chromatography and its
    relation to other water quality parameters. J. Chromatogr. A 2008, 1210,
    92─98.
    Grynpas, M. D.; Hamilton, E.; Cheung, R.; Tsouderos, Y.; Deloffre, P.; Hott, M.;
    Marie, P. J. Strontium increases vertebral bone volume in rats at a low dose
    that does not induce detectable mineralization defect. Bone 1996, 18,
    253─259.
    Hancock, R. D. Chelate ring size and metal ion selection. The basis of selectivity for
    metal ions in open-chain ligands and macrocycles. J. Chem. Educ. 1992, 69,
    615─621.
    Hankins, M. G.; Bartsch, R. A.; Olsher, U. Anion effect on selectivity in solventextraction
    of alkali-metal salts by crown-ethers. Solvent Extr. Ion. Exch. 1995,
    13, 983─995.
    Hashemi, P.; Beyranvand, S.; Mansur, R. S.; Ghiasvand, A. R. Development of a
    simple device for dispersive liquid-liquid microextraction with lighter than
    water organic solvents: Isolation and enrichment of glycyrrhizic acid from
    licorice. Anal. Chim. Acta 2009, 655, 60─65.
    He, Y.; Lee, H. K. Liquid phase microextraction in a single drop of organic solvent by
    using a conventional microsyringe. Anal. Chem. 1997, 69, 4634─4640.
    Herrera-Herrera, A. V.; Asensio-Ramos, M.; Hernandez-Borges, J.; Rodriguez-
    Delgado, M. A. Dispersive liquid-liquid microextraction for determination of
    organic analytes. Trac-Trends Anal. Chem. 2010, 29, 728─751.
    Holmgren, S.; Tovedal, A.; Jonsson, S.; Nygren, U.; Rameback, H. Handling
    interferences in Sr-89 and Sr-90 measurements of reactor coolant water: A
    method based on strontium separation chemistry. Appl. Radiat. Isot. 2014, 90,
    94─101.
    Inokuchi, Y.; Ebata, T.; Rizzo, T. R.; Boyarkin, O. V. Microhydration Effects on the
    Encapsulation of Potassium Ion by Dibenzo-18-Crown-6. J. Am. Chem. Soc.
    2014, 136, 1815─1824.
    Jeannot, M. A.; Cantwell, F. F. Solvent microextraction into a single drop. Anal.
    Chem. 1996, 68, 2236─2240.
    Jeannot, M. A.; Cantwell, F. F. Mass transfer characteristics of solvent extraction into
    a single drop at the tip of a syringe needle. Anal. Chem. 1997, 69, 235─239.
    Kaur, A.; Kaur, G.; Singh, A.; Singh, N.; Kaur, N. Polyamine based ratiometric
    fluorescent chemosensor for strontium metal ion in aqueous medium:
    application in tap water, river water, and in oral care. ACS Sustain. Chem.
    Eng. 2016, 4, 94─101.
    Kaur, S.; Kaur, A.; Kaur, N.; Singh, N. Development of chemosensor for Sr2+ using
    organic nanoparticles: application of sensor in product analysis for oral care.
    Org. Biomol. Chem. 2014, 12, 8230─8238.
    Khan, A. S.; Baldwin, W. G.; Chow, A. The extraction of alkali metal picrates by
    polyurethane foam using crown ether. Canad. J. Chem. 1981, 59, 1490─1496.
    Kumar, A.; Mohapatra, P. K.; Pathak, P. N.; Manchanda, V. K. Dicyclohexano 18
    crown 6 in butanol-octanol mixture: A promising extractant of Sr(II) from
    nitric acid medium. Talanta 1997, 45, 387─395.
    Leong, M. I.; Huang, S. D. Dispersive liquid─liquid microextraction method based on
    solidification of floating organic drop combined with gas chromatography
    with electron-capture or mass spectrometry detection. J. Chromatogr. A 2008,
    1211, 8─12.
    Leong, M. I.; Huang, S. D. Dispersive liquid─liquid microextraction method based on
    solidification of floating organic drop for extraction of organochlorine
    pesticides in water samples. J. Chromatogr. A 2009, 1216, 7645─7650.
    Lerouge, C.; Gaucher, E. C.; Tournassat, C.; Negrel, P.; Crouzet, C.; Guerrot, C.;
    Gautier, A.; Michel, P.; Vinsot, A.; Buschaert, S. Strontium distribution and
    origins in a natural clayey formation (Callovian-Oxfordian, Paris Basin,
    France): A new sequential extraction procedure. Geochim. Cosmochim. Acta
    2010, 74, 2926─2942.
    Li, G. J.; J. Chen; J. F. Ji; L. W. Liu; J. D. Yang; X. F. Sheng. Global cooling forced
    increase in marine strontium isotopic ratios: Importance of mica weathering
    and a kinetic approach. Earth Planet. Sci. Lett. 2007, 254, 303─312.
    Liberal, F.; Tavares, A. A. S.; Tavares, J. Palliative treatment of metastatic bone pain
    with radiopharmaceuticals: A perspective beyond Strontium-89 and
    Samarium-153. Appl. Radiat. Isot. 2016, 110, 87─99.
    Liepe, K.; J. Koltzerke. A comparative study of Re-188-HEDP, Re-186-HEDP, (SM)-
    S-153-EDTMP and Sr-89 in the treatment of painful skeletal metastases. Nucl.
    Med. Commun. 2007, 28, 623─630.
    Luksiene, B.; Puzas, A.; Remeikis, V.; Druteikiene, R.; Gudelis, A.; Gvozdaite, R.;
    Buivydas, S.; Davidonis, R.; Kandrotas, G. Spatial patterns and ratios of Cs-
    137, Sr-90, and Pu isotopes in the top layer of undisturbed meadow soils as
    indicators for contamination origin. Environ. Monit. Assess. 2015, 187, 16.
    Marcus, Y. The thermodynamics of solvation of ions. Part 2.—The enthalpy of
    hydration at 298.15 K. Journal of the Chemical Society, Faraday Transactions
    1: Physical Chemistry in Condensed Phases 1987, 83, 339─349.
    Marcus, Y. Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of
    hydration at 298.15 K. J. Chem. Soc., Faraday Trans. 1991, 87, 2995─2999.
    Marie, P. J.; Garba, M. T.; Hott, M.; Miravet, L. Effect of low doses of stable
    strontium on bone metabolism in rats. Miner Electrolyte Metab 1985, 11,
    5─13.
    Marini, M.; Campanelli, A.; Abballe, F. Measurement of alkaline and earthy ions in
    fish otolith and sea water using a high performance ion chromatography. Mar.
    Chem. 2006, 99, 24─30.
    Michel, H.; Levent, D.; Barci, V.; Barci-Funel, G.; Hurel, C. Soil and sediment
    sample analysis for the sequential determination of natural and anthropogenic
    radionuclides. Talanta 2008, 74, 1527─1533.
    Mohite, B. S.; Khopkar, S. M.. Solvent extraction separation of strontium as 18-
    crown-6 complex with picrate ion. Anal. Chem. 1987, 59, 1200─1203.
    Moinfar, S.; Hosseini, M. R. M. Development of dispersive liquid─liquid
    microextraction method for the analysis of organophosphorus pesticides in tea.
    J. Hazard. Mater. 2009, 169, 907─911.
    Morton, H. J. Role of carbon dioxide in erythropoiesis. Nature 1967, 215,
    1166─1167.
    Muralidharan, A.; Smith, M. T.. Pathobiology and management of prostate cancerinduced
    bone pain: recent insights and future treatments.
    Inflammopharmacology 2013, 21, 339─363.
    Nesterenko, E. P.; Nesterenko, P. N.; Paull, B.; Melendez, M.; Corredor, J. E. Fast
    direct determination of strontium in seawater using high-performance
    chelation ion chromatography. Microchem. J. 2013, 111, 8─15.
    Oikawa, S.; Takata, H.; Watabe, T.; Misonoo, J.; Kusakabe, M. Distribution of the
    Fukushima-derived radionuclides in seawater in the Pacific off the coast of
    Miyagi, Fukushima, and Ibaraki Prefectures, Japan. Biogeosciences 2013, 10,
    5031─5047.
    Okamoto, H.; Okamoto, Y.; Hirokawa, T.; Timerbaev, A. R. Trace ion analysis of sea
    water by capillary electrophoresis: determination of strontium and lithium preconcentrated
    by transient isotachophoresis. Analyst 2003, 128, 1439─1442.
    Ozgur, S.; Sumer, H.; Kocoglu, G. Rickets and soil strontium. Arch. Dis. Child. 1996,
    75, 524─526.
    Parsons,C. M.; Judge, A.; Leyland, K.; Bruyère, O.; Dop, F. P.; Chapurlat, R.; Jean-
    Yves, R.; Edwards, M. H.; Dennison, E. M.; Cooper, C.; Inskip, H.
    Novel approach to estimate osteoarthritis progression:use of the reliable
    change index in the evaluation of joint space loss. J. Arthritis Care &
    Research. 2019, 71, 300─307.
    Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem.
    Soc. 1967a, 89, 2495─2496.
    Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem.
    Soc. 1967b, 89, 7017─7036.
    Pin, C.; Joannon, S.; Bosq, C.; Le Fevre, B.; Gauthier, P. J. Precise determination of
    Rb, Sr, Ba, and Pb in geological materials by isotope dilution and ICPquadrupole
    mass spectrometry following selective separation of the analytes.
    J. Anal. At. Spectrom. 2003, 18, 135─141.
    Popov, A. M.; Drozdova, A. N.; Zaytsev, S. M.; Biryukova, D. I.; Zorov, N. B.;
    Labutin, T. A. Rapid, direct determination of strontium in natural waters by
    laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2016, 31,
    1123─1130.
    Psillakis, E. Vortex-assisted liquid─liquid microextraction revisited. Trac-Trends
    Anal. Chem. 2019, 113, 332─339.
    Rezaee, M.; Assadi, Y.; Hosseinia, M. R. M.; Aghaee, E.; Ahmadi, F.; Berijani, S.
    Determination of organic compounds in water using dispersive liquid-liquid
    microextraction. J. Chromatogr. A 2006, 1116, 1─9.
    Rockell, J. E. P.; Williams, S. M.; Taylor, R. W.; Grant, A. M.; Jones, I. E.; Goulding,
    A. Two-year changes in bone and body composition in young children with a
    history of prolonged milk avoidance. Osteoporosis Int. 2005, 16, 1016─1023.
    Romer, P.; Desaga, B.; Proff, P.; Faltermeier, A.; Reicheneder, C. Strontium promotes
    cell proliferation and suppresses IL-6 expression in human PDL cells. Ann.
    Anat.-Anat. Anz. 2012, 194, 208─211.
    Rosenthall, L. The Role of Strontium 85 in the Detection of Bone Disease. 1965, 84,
    75─82.
    Sadi, B. B.; Li, C.; Jodayree, S.; Lai, E. P.; Kochermin, V.; Kramer, G. H. A rapid
    bioassay method for the determination of 90Sr in human urine sample. Radiat
    Prot Dosimetry 2010, 140, 41─48.
    Sahoo, S. K.; Kavasi, N.; Sorimachi, A.; Arae, H.; Tokonami, S.; Mietelski, J. W.;
    Lokas, E.;Yoshida, S. Strontium-90 activity concentration in soil samples
    from the exclusion zone of the Fukushima daiichi nuclear power plant. Sci Rep
    2016, 6, 10.
    Salido, A.; Jones, B. The use of aluminum and potassium as modifiers to improve the
    determination of strontium by tungsten coil atomic emission spectrometry.
    Anal. Lett. 2011, 44, 2760─2767.
    Schumacher, M.; Lode, A.; Helth, A.; Gelinsky, M.. A novel strontium(II)-modified
    calcium phosphate bone cement stimulates human-bone-marrow-derived
    mesenchymal stem cell proliferation and osteogenic differentiation in vitro.
    Acta Biomater. 2013, 9, 9547─9557.
    Segatin, N.; Klofutar, C.. Thermodynamics of the Solubility of Water in 1-Hexanol,
    1-Octanol, 1-Decanol, and Cyclohexanol. Monatshefte fur Chemie. 2004, 135,
    241–248.
    Steed, J. W. First- and second-sphere coordination chemistry of alkali metal crown
    ether complexes. Coord. Chem. Rev. 2001, 215, 171─221.
    Storey, E. Strontium "rickets": bone, calcium and strontium changes. Australas Ann.
    Med. 1961, 10, 213─222.
    Takagai, Y.; Furukawa, M.; Kameo, Y.; Suzuki, K. Sequential inductively coupled
    plasma quadrupole mass-spectrometric quantification of radioactive strontium-
    90 incorporating cascade separation steps for radioactive contamination rapid
    survey. Anal. Methods 2014, 6, 355─362.
    Tazoe, H.; Obata, H.; Yamagata, T.; Karube, Z.; Nagai, H.; Yamada, M.
    Determination of strontium-90 from direct separation of yttrium-90 by solid
    phase extraction using DGA Resin for seawater monitoring. Talanta 2016,
    152, 219─227.
    Uesugi, M.; Watanabe, R.; Sakai, H.; Yokoyama, A. Rapid method for determination
    of Sr-90 in seawater by liquid scintillation counting with an extractive
    scintillator. Talanta 2018, 178, 339─347.
    Vajda, N.; Kim, C. K. Determination of radiostrontium isotopes: A review of
    analytical methodology. Appl. Radiat. Isot. 2010, 68, 2306─2326.
    Vandecasteele, C.; Vanhoe, H.; Dams, R.; Vanballenberghe, L.; Wittoek, A.;
    Versieck, J. Determination of strontium in human serum by inductively
    coupled plasma mass spectrometry and neutron activation analysis: A
    comparison. Talanta 1990, 37, 819─823.
    Vonderheide, A. P.; Zoriy, M. V.; Izmer, A. V.; Pickhardt, C.; Caruso, J. A.;
    Ostapczuk, P.; Hille, R.; Becker, J. S. Determination of Sr-90 at ultratrace
    levels in urine by ICP-MS. J. Anal. At. Spectrom. 2004, 19, 675─680.
    Wang, C. Y.; Chang, D. A.; Shen, Y. H.; Sun, Y. C.; Wu, C. H. Vortex-assisted
    liquid–liquid microextraction of strontium from water samples using 4′,4″
    (5″)-di-(tert-butylcyclohexano)-18-crown-6 and tetraphenylborate. J. Sep.
    Sci. 2017, 40, 3866─3872
    Xu, H.; Ding, Z. Q.; Lv, L. L.; Song, D. D.; Feng, Y. Q. A novel dispersive liquidliquid
    microextraction based on solidification of floating organic droplet
    method for determination of polycyclic aromatic hydrocarbons in aqueous
    samples. Anal. Chim. Acta 2009, 636, 28─33.
    Yan, Y. Y.; Chen, X.; Hu, S.; Bai, X. H. Applications of liquid-phase microextraction
    techniques in natural product analysis: A review. J. Chromatogr. A 2014,
    1368, 1─17.
    Yiantzi, E.; Psillakis, E.; Tyrovola, K.; Kalogerakis, N. Vortex-assisted liquid─liquid
    microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta 2010,
    80, 2057─2062.
    Zanjanchi, M. A.; Arvand, M.; Mahmoodi, N. O.; Islamnezhad, A. A Fast response
    strontium ion-selective electrode prepared by sol-gel membrane technique.
    Electroanalysis 2009, 21, 1816─1821.
    Zhang, Y. F.; Lee, H. K. Determination of ultraviolet filters in water samples by
    vortex-assisted dispersive liquid─liquid microextraction followed by gas
    chromatography-mass spectrometry. J. Chromatogr. A 2012, 1249, 25─31.
    Zannella, C.; Carucci, F.; Aversano, R.; Prohaska, T.; Vingiani, S.; Carputo, D.; Adamo,
    P. Genetic and geochemical signatures to prevent frauds and counterfeit
    of high-quality asparagus and pistachio. Food chem. 2017, 237, 545─552.
    Zho, Q. X.; Bai, H. H.; Xie, G. H.; Xiao, J. P. Trace determination of
    organophosphorus pesticides in environmental samples by temperaturecontrolled
    ionic liquid dispersive liquid-phase microextraction. J. Chromatogr.
    A 2008, 1188, 148─153.
    Zhou, Q. J.; Xiang, J. F.; Tang, Y. L.; Liao, J. P.; Yu, C. Y.; Du, H. Y.; Yang, Q. F.;
    Xu, G. Z. Interaction of spiro (2R,3R,4S)-4-benzyloxy-2,3-iso
    propylidenedioxy-1-oxacyclopentane- 5,5 '-(2-nitromethylene-1,3-
    diazacyclohexane) with bovine serum albumin. Pest. Biochem. Physiol. 2008,
    92, 43─47.
    張益民與溫淑媛。利用謝侖可夫輻射計測法測定生物試樣中鍶-89 暨鍶-90 核種
    活度之研究。臺電核能月刊,2011,337,36─54。
    行政院環保署環境檢驗所,固相萃取法,2004。
    行政院環保署環境檢驗所,索氏萃取法,2002。
    行政院環保署環境檢驗所,超音波萃取法,2002。
    王敬懿. 開發漩渦輔助式液液微萃取技術及其應用. 博士論文, 國立清華大學,
    新竹, 2017.

    QR CODE