研究生: |
林育生 Yu-Sheng Lin |
---|---|
論文名稱: |
以錫碳負極複合材料最佳化提升鋰離子二次電池之電性表現 Improving the Electrochemical Performance of Li-ion Secondary Batteries by Optimizing the Sn / C Composite Anode Materials |
指導教授: |
杜正恭
Jenq-Gong Duh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 94 |
中文關鍵詞: | 錫 、無電鍍 、負極 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技日新月異,可攜式電子產品變的越來越輕、薄、短、小。因此,高功率、高能量密度的鋰離子二次電池之發展在當今能源科技領域上佔有一席不可或缺的地位。因此在本研究,複合材料的觀念被運用來研發創新的負極材料系統。
從商業用電池之負極材料的演進,錫碳系統之負極材料已經成為一種新趨勢。而本研究是利用化學溶液法製備錫碳負極複合材料。在研究的第一部份,電池循環壽命藉由改變不同的酸鹼度來提升。當酸鹼度為6時,多相的錫化合物可被鍍覆在天然石墨的表面,這些錫化合物含有Sn6O4(OH)4、SnO2以及Sn3(PO4)2。它們與鋰離子產生反應後還原成錫金屬並產生可以吸收充放電過程產生大量體積變化之緩衝物。因此,酸鹼度為6的電池擁有最好的循環壽命。此電池在0.001V與1.5V充放電時,第1圈的電容量為758 mAhg-1,即使充放電50圈,仍然具有超過460 mAhg-1的電容量。
研究的第二部份是利用改變不同的初始錫濃度以提升電池的循環壽命。當錫濃度為0.12M時,最多含量的多相錫化合物被鍍覆於天然石墨表面上。除此之外,錫凝團的現象能夠被多相錫化合物所產生的緩衝物所抑制。因此,當初始錫濃度為0.12M時,擁有最佳的電化學性質。在0.001V與1.5V充放電過程中,第1圈的電容量為734 mAhg-1,經過50圈之充放電仍然具有超過440 mAhg-1的電容量。
本研究的第三部份是利用分析充放電過程產生的相變化來推測反應機制。並且藉由改變不同的截止電壓來防止錫凝團的產生以及富鋰之鋰錫合金相的生成。當電池在0.001V與1V充放電時,電池能表現最好的循環壽命。雖然前3圈有電容量衰退的問題,但是50圈之後的電容量幾乎沒有衰退。第1圈與第50圈的電容量分別為417 mAhg-1與359 mAhg-1,經過50圈的充放電仍然擁有超過86%的電容量。
1. A. Volta, “On the electricity excited by the mere contact of
conducting substances of different kinds,” Philosophical Transactions,
(1800) 403-431.
2. http://www.leadacidbatteryinfo.org/resources.htm
3. J.P. Gabano, French Patent 1, 583 (1969) 804.
4. A.V. Fraioly, W.A. Barber, and A.M. Feldman, R. S. Patent 3, 551
(1970) 205.
5. J. Moser, U. S. Patent 3, 660 (1972) 163.
6. A.A. Schneider, and J. Noser, U. S. Patent 3, 674 (1972) 562.
7. M.S. Whittingham, and M.B. Dines, J. Electrochem. Soc., 124 (1977)
1387-1388.
8. D.L. Maricle, and J.P. Mohns, U. S. Patent 3, 567 (1971) 515.
9. K. Brandt, J. Power Sources, 18 (1986) 117-125.
10. Y. Matsuda, and Z. Takehara (Eds.), Denchi Binran (Battery
handbook), 3rd Ed., Maruzen, Tokyo (2001) 145-146.
11. Sony Corporation, “US 18650G3,” Sony Data Sheets for Lithium Ion
Battery, (2000) 14-15.
12. J. Hajek, French Patent, 8 (1949) 10.
13. M. S. Whittingham, Science, 192 (1976) 1126-1128.
14. A. A. Schneider, U. S. Patent No. 4,010,043 (1972).
15. K. A. Klinedinst, U. S. Patent No. 4,176,214 (1979).
16. M. S. Whittingham, U. S. Patent No. 4,049,887 (1977).
17. M. Inaba, and Z. Ogumi, “Up-to-date development of lithium-ion
batteries in Japen,” IEEE Electrical Insulation Magazine, 17 (2001)
84
6-20.
18. H. Ikeda and K. Terada, “Present status and prospects of lithium ion
batteries: part I,” Valqua Review, 42 (1998) 1-7.
19. M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki and Z. Ogumi,
“Electrochemical scanning tunneling microscopy analysis of the
surface reactions on graphite basal plane in ethylene carbonate-based
solvents and propylene carbonate,” J. Power Sources, 68 (1997)
221-226.
20. Y. Matsuda and Z. Takehara (Eds.), “Denchi Binran (Battery
Handbook),” 3rd Ed., Maruzen, Tokyo, (2001) 278.
21. M. Lazzari and B. Scrosati, “A cyclable lithium organic electrolyte
cell based on two intercalation electrodes,” J. Electrochem. Soc., 127
(1980) 773-774.
22. B. Di Pietro, M. Patriarca and B. Scrosati, “On the use of rocking
chair configurations for cyclable lithium organic electrolyte
batteries,” J. Power Sources, 8 (1982) 289-299.
23. J.L. Tirado, “Inorganic materials for the negative electrode of
lithium-ion batteries: state-of-the-art and future prospects,” Mater.
Sci. Eng. R, 40 (2003) 103-136.
24. T. Ohzuku, Y. Iwakoshi and K. Sawai, “Formation of
lithium-graphite intercalation compounds in nonaqueous electrolytes
and their application as a negative electrode for a lithium ion
(shuttlecock) cell,” J. Electrochem. Soc., 140 (1993) 2490-2498.
25. L.J. Fu, K. Endo, K. Sekine, T. Takamura, Y.P. Wu and H.Q. Wu,
“Studies on capacity fading mechanism of graphite anode for Li-ion
battery,” J. Power Sources, 162 (2006) 663-666.
85
26. H. Zheng, K. Jiang, T. Abe and Z. Ogumi, “ Electrochemical
intercalation of lithium into a natural graphite anode in quaternary
ammonium-based ionic liquid electrolytes,” Carbon, 44 (2006)
203-210.
27. H. Zhao, J. Ren, X. He, J. Li, C. Jiang and C. Wan, “Purification and
carbon-film-coating of natural graphite as anode materials for Li-ion
batteries,” Electrochim. Acta, 52 (2007) 6006-6011.
28. R.A. Huggins, “Lithium alloy negative electrodes,” J. Power Sources,
81-82 (1999) 13-19.
29. M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe and Z.
Ogumi, “STM study on graphite/electrolyte interface in lithium-ion
batteries: solid electrolyte interface formation in trifluoropropylene
carbonate solution,” Electrochem. Acta, 45 (1999) 99-105.
30. Y. Idota, “Tin-based amorphous oxide: a high-capacity lithium-ion
storage material,” Science, 276 (1997) 1395-1397.
31. P.P Ferguson, A.D.W. Todd and J.R. Dahn, “Comparison of
mechanically alloyed and sputtered tin-cobalt-carbon as an anode
material for lithium-ion batteries,” Electrochem. Commun., 10 (2008)
25-31.
32. J. Hassoun, G. Mulas, S. Panero and B. Scrosati, “Ternary Sn-Co-C
Li-ion battery electrode material prepared by high ball milling,”
Electrochem. Commun., 9 (2007) 2075-2081.
33. M.J. Lindsay, G.X. Wang, and H.K. Liu, “Preparation and
characterization of carbon nanotubes for energy storage,” J. Power
Sources, 119–121 (2003) 84–87.
34. M.D. Fleischauer, M.N. Obrovac, J.D. McGraw, R.A. Dunlap, J.M.
86
Topple, and J.R Dahn, “Al-M (M=Cr,Fe,Mn,Ni) thin-film negative
electrode materials,” J. Electrochem. Soc., 153 (2006) A484–A491.
35. J. Graetz, Ahn, C.C., Yazami, R., and Fultz, B. “Highly reversible
lithium storage in nanostructured silicon,” Electrochem. Solid-State
Lett., 6 (2003) A194–A197.
36. T.D. Hatchard, and J.R. Dahn, “Electrochemical reaction of the SiAg
binary system with Li,” J. Electrochem. Soc., 152 (2005)
A1445–A1451.
37. T.D. Hatchard, M.N Obrovac, , and J.R. Dahn, “Electrochemical
reaction of the Si1-xZnx binary system with Li,” J. Electrochem. Soc.,
152 (2005) A2335–A2344.
38. G.T. Zhou, O. Palchik, V.G. Pol, E. Sominski, Y. Koltypina, and
Gedanken, A. “Microwave-assisted solid-state synthesis and
characterization of intermetallic compounds of Li3Bi and Li3Sb,” J.
Mater. Chem., 13 (2003) 2607–2611.
39. J. Xie, G.S. Cao, X.B. Zhao, T.D. Zhong, and M.J. Zhao,
“ Electrochemical performances of nanosized intermetallic
compound CoSb2 prepared by the solvothermal route,” J.
Electrochem. Soc., 151 (2004) A1905–A1910.
40. M.M. Younan, I.H.M. Aly, and M.T Nageeb, “Effect of heat
treatment on electroless ternary nickel-cobalt-phosphorus alloy,” J.
Appl. Electrochem., 32 (2002) 439–446.
41. V. Pralong, D.C.S. Souza, K.T. Leung, and L.F. Nazar, “Reversible
lithium uptake by CoP3 at low potential: role of the anion,”
Electrochem. Comm., 4 (2002) 516–520.
87
42. M.P. Bichat, T. Politova, J.L. Pascal, F.Favier, and L. Monconduit,
“Electrochemical Reactivity of Cu3P with Lithium,” J. Electrochem.
Soc., 151 (2004) A2074–A2081.
43. M.V.V.M. Satya Kishore, and U.V. Varadaraju “Electrochemical
reaction of lithium with Zn3P2,” J. Power Sources., 144 (2005)
204–207.
44. J. Yang, M. Winter, and J.O. Besenhard, “Small particle size
multiphase Li-alloy anodes for lithium-ion-batteries,” Solid State
Ionics., 90 (1996) 281–287.
45. N. Li, C.R. Martin, and B. Scrosati, “A high-rate, high-capacity,
nanostructured tin oxide electrode,” Electrochem. Solid-State Lett., 3
(2000) 316–318.
46. R.A. Haggins, Handbook of Battery Materials, Wiley-VCH,
Weinheim (1999) 359.
47. I.A. Courtney, and J.R. Dahn, “Electrochemical and in situ X-ray
diffraction studies of the reaction of lithium with tin oxide
composites,” J. electrochem. Soc., 144 (1997) 2045–2052.
48. N. Sharma, K.M. Shaju, G.V. Subba Rao, and B.V.R. Chowdari,
“Anodic behaviour and X-ray photoelectron spectroscopy of ternary
tin oxides.” J. Power Sources., 139 (2005) 250–260.
49. D.W. Zhang, S.Q. Zhang, Y. Jin, T.H. Yi, S. Xie, and C.H. Chen,
“Li2SnO3 derived secondary Li–Sn alloy electrode for lithium-ion
batteries,” J. Alloy. Comp. 415 (2006) 229–233.
50. F. Belliard, P.A. Connor, and J.T.S. Irvine, “Novel tin oxide-based
anodes for Li-ion batteries,” Solid State Ionics., 135 (2000) 163–167.
88
51. H. Li, X. Huang, and L. Chen, “Electrochemical impedance
spectroscopy study of SnO and nano-SnO anodes in lithium
rechargeable batteries,” J. Power Sources, 81-82 (1999) 340–345.
52. J. Li, H. Li, Z. Wang, L. Chen, and X. Huang, “The study of surface
films formed on SnO anode in lithium rechargeable batteries by FTIR
spectroscopy,” J. Power Sources., 107 (2002) 1–4.
53. N. Li, and C.R. Martin, “A high-rate, high-capacity, nanostructured
Sn-based anode prepared using sol-gel template synthesis,” J.
Electrochem. Soc., 148 (2001) A164–A170.
54. I.A. Courtney, W.R. McKinnon, and J.R. Dahn, “On the aggregation
of tin in SnO composite glasses caused by the reversible reaction
with lithium,” J. Electrochem. Soc., 146 (1999) 59–68.
55. D. Aurbach, A. Nimberger, B. Markovsky, E. Sominski, and A.
Gedanken, “Nanoparticles of SnO produced by sonochemistry as
anode materials for rechargeable lithium batteries,” Chem. Mater., 14
(2002) 4155–4163.
56. C. Kim, M. Noh, M. Choi, J. Cho, and B. Park, “Critical size of a
nano SnO2 electrode for Li-secondary battery,” Chem. Mater., 17
(2005) 3297–3301.
57. H. Huang, E.M. Kelder, L. Chen, and J. Schoonman,
“ Electrochemical characteristics of Sn1-xSixO2 as anode for
lithium-ion batteries,” J. Power Sources, 81-82 (1999) 362–367.
58. J. Chouvin, C.P. Vicente, J. Olivier-Fourcade, J.C. Jumas, B. Simon,
and P. Biensan, “Deeper insight on the lithium reaction mechanism
with amorphous tin composite oxides,” Solid State Sci., 6 (2004)
89
39–46.
59. F. Robert, P.E. Lippens, J. Olivier-Fourcade, J.C. Jumas, M.
Morcrette, J. Morato, L. Aldo, and P. Biensan, “Structural and
electronic modifications induced by lithium insertion in Sn-based
oxide glasses,” J. Power Sources., 119-121 (2003) 581–584.
60. H. Morimoto, M. Naka, M. Tatsumisago, and T. Minami,
“Mechanochemical synthesis and anode properties of SnO-based
amorphous materials,” J. Electrochem. Soc., 146 (1999) 3970–3973.
61. W.H. Ho, H.C. Liu, H.C. Chen, S.K. Yen, “Characterization of
electrolytic tin dioxide deposition on Pt for lithium ion battery
applications,” Surf. Coat. Tech., 201 (2007) 7100–7106.
62. Z. Ying, Q. Wan, H. Cao, Z.T. Song, S.L. Feng, “Characterization of
SnO2 nanowires as an anode material for Li-ion batteries,” Appl.
Phys. Lett., 87 (2005) 113108.
63. H. Li, X. Huang, L. Chen, “Direct Imaging of the Passivating Film
and Microstructure of Nanometer-Scale SnO Anodes in Lithium
Rechargeable Batteries” Electrochem. Solid St., 1 (1998) 241-243.
64. I.A. Courtney. J.R. Dahn, “Electrochemical and In Situ X-Ray
Diffraction Studies of the Reaction of Lithium with Tin Oxide
Composites,” J. Electrochem. Soc., 144 (1997) 2045-2052.
65. R. Retoux, T. Brousse, D.M. Schleich, “High-Resolution Electron
Microscopy Investigation of Capacity Fade in SnO2 Electrodes for
Lithium-Ion Batteries,” J. Electrochem. Soc., 146 (1999) 2472-2476.
66. J. Yang, Y. Takeda, N. Imanishi, J.Y. Xie, O. Yamamoto,
“Morphology Modification and Irreversibility Compensation for SnO
90
Anodes,” J. Power Sources, 97-98 (2001) 216-218.
67. N. Li, C.R. Martin, B. Scrosati, “Nanomaterial-based Li-ion Battery
Electrodes,” J. Power Sources, 97-98 (2001) 240-243.
68. S. Han, B. Jang, T. Kim, S.M. Oh, T. Hyeon,“Simple Synthesis of
Hollow Tin Dioxide Microspheres and Their Application to
Lithium-Ion Battery Anodes,” Adv. Funct. Mater., 15 (2005)
1845-1850.
69. S.H. Ng, D.I. dos Santos, S.Y. Chew, D. Wexler, J. Wang, S.X. Dou,
H.K. Liu, “Polyol-mediated synthesis of ultrafine tin oxide
nanoparticles for reversible Li-ion storage,” Electrochem. Commun.,
9 (2007) 915-919.
70. Z.Q. He, X.H. Li, L.Z. Xiong, X.M. Wu, Z.B. Xiao, M.Y. Ma,
“Synthesis and electrochemical properties of tin oxide-based
composite by rheological technique,” Mater. Chem. Phys., 93 (2005)
516-520.
71. S. Li, X. Qiao, J. Chen, H. Wang, F. Jia, X. Qiu, “Effects of
temperature on indium tin oxide particles synthesized by
co-precipitation,” J. Cryst. Growth, 289 (2006) 151-156.
72. J.Y. Kim, D.E. King, P.N. Kumta, G.E. Blomgren, “Chemical
synthesis of tin oxide-based materials for Li-ion battery anodes
influence of process parameters on the electrochemical behavior,” J.
Electrochem. Soc., 147 (2000) 4411-4420.
73. L.Yuan, Z.P. Guo, K. Konstantinov, J.Z. Wang, H.K. Liu, “In situ
fabrication of spherical porous tin oxide via a spray pyrolysis
technique,” Electrochim. Acta, 51 (2006) 3680-3684.
74. Y. Wang, F. Su, J.Y. Lee, X.S. Zhao, “Crystalline carbon hollow
91
spheres, crystalline carbon-SnO2 hollow spheres, and crystalline
SnO2 hollow spheres: synthesis and performance in reversible Li-ion
storage,” Chem. Mater. 18 (2006) 1347-1353.
75. S.C. Nam, Y.S. Yoon, W.I. Cho, B.W. Cho, H.S. Chun, K.S. Yun,
“Reduction of irreversibility in the first charge of tin oxide thin film
negative electrodes,” J. Electrochem. Soc., 148 (2001) A220-A223.
76. K.F. Chiu, H.C. Lin, K.M. Lin, T.Y. Lin, D.T. Shieh, “The significant
role of solid oxide interphase in enhancement of cycling performance
of Sn thin-film anodes,” J. Electrochem. Soc., 153 (2006)
A1038-A1042.
77. S.C. Nam, Y.S. Yoon, W.I. Cho, B.W. Cho, H.S. Chun, K.S. Yun,
“Enhancement of thin film tin oxide negative electrodes for lithium
batteries,” Electrochem. Commun., 3 (2001) 6-10.
78. T. Fang, L.Y. Hsiao, J.G. Duh, S.R. Sheen, “A novel composite
negative electrode consist of multiphase Sn compounds and
mesophase graphite powders for lithium ion batteries,” J. Power
Sources, 160 (2006) 536-541.
79. G.X. Wang, J.H. Ahn, M.J. Lindsay, L. Sun, D.H. Bradhurst, , S.X.
Dou, and H.K. Liu, “Graphite-tin composites as anode materials for
lithium-ion batteries,” J. Power Sources, 97-98 (2001) 211–215.
80. L. Balan, J. Ghanbaja, P. Willmann, and D. Billaud “Novel
tin-graphite composites as negative electrodes of Li-ion batteries,”
Carbon, 43 (2005) 2311–2316.
81. A. Caballero, J. Morales, and L. Sanchez, “Tin nanoparticles formed
in the presence of cellulose fibers exhibit excellent electrochemical
performance as anode materials in lithium-ion batteries,”
92
Electrochem. Solid-State Lett., 8 (2005) A464–A466.
82. J. Santos-Pena, T. Brousse, and D.M. Schleich, “Search for suitable
matrix for the use of tin-based anodes in lithium ion batteries,” Solid
State Ionics, 135 (2000) 87–93.
83. B. Veeraraghavan, A.Durairajan, B.Haran, B.Popov, and R.Guidotti,
“Study of Sn-coated graphite as anode material for secondary
lithium-ion batteries” J. Electrochem. Soc., 149 (2002) A675–A681.
84. G.X. Wang, J. Yao, J.H. Ahn, H.K. Liu, and S.X. Dou,
“Electrochemical properties of nanosize Sn-coated graphite anodes in
lithium-ion cells,” J. Appl. Electrochem., 34 (2004) 187–190.
85. Y. Wang, J.Y. Lee, and T.C. Deivaraj, “Tin nanoparticle loaded
graphite anodes for Li-ion battery applications” J. Electrochem. Soc.,
151 (2004) A1804–A1809.
86. I. Grigoriants, L.Sominski, I. Ifargan, D. Aurbach, and A. Gedanken,
“The use of tin-decorated mesoporous carbon as an anode material
for rechargeable lithium batteries,” Chem. Comm., 7 (2005)
921–923.
87. B. Guo, J. Shu, K. Tang, Y. Bai, Z. Wang, L. Chen, “Nano-Sn/hard
carbon composite anode material with high-initial coulombic
efficiency,” J. Power Sources, 177 (2008) 205-210.
88. A. Trifonova, M. Winter, J.O. Besenhard, “Structural and
electrochemical characterization of tin-containing graphite
compounds used as anodes for Li-ion batteries,” J. Power Sources,
174 (2007) 800-804.
89. J.Y. Lee, R. Zhang, and Z. Liu, “Dispersion of Sn and SnO on carbon
anodes,” J. Power Sources, 90 (2000) 70–75.
93
90. J.Y. Lee, R. Zhang, and Z. Liu, “Lithium intercalation and
deintercalation reactions in synthetic graphite containing a high
dispersion of SnO,” Electrochem. Solid-State Lett., 3 (2000)
167–170.
91. Y. Wang, and J.Y. Lee, “Preparation of SnO2-graphite
nanocomposite anodes by urea-mediated hydrolysis,” Electrochem.
Comm., 5 (2003) 292–296.
92. S. Yang, H. Song, X. Chen, “Nanosized tin and tin oxides loaded
expanded mesocarbon microbeads as negative electrode material for
lithium-ion batteries,” J. Power Sources, 173 (2007) 487-494.
93. L. Shi, H. Li, Z. Wang, X. Huang, and L. Chen, “Nano-SnSb alloy
deposited on MCMB as an anode material for lithium ion batteries,” J.
Mater. Chem., 11 (2001) 1502–1505.
94. K. Wang, X. He, L. Wang, J. Ren, C. Jiang, and C. Wan, “Reparation
of Cu6Sn5-encapsulated carbon microsphere anode materials for
Li-ion batteries by carbothermal reduction of oxides,” J. Electrochem.
Soc., 153 (2006) A1859–A1862.
95. M. Behm, J.T.S. Irvine, “Influence of structure and composition upon
performance of tin phosphate based negative electrodes for lithium
batteries,” Electrochim. Acta 47 (2002) 1727–1738.
96. H. Uchiyama, H. Imai, “Tin oxide meshes consisting of nanoribbons
prepared through an intermediate phase in an aqueous solution,”
Cryst. Growth Des. 7 (2007) 841-843.
97. W.H. Ho, H.C. Liu, H.C. Chen, and S.K. Yen, “Characterization of
electrolytic tin dioxide deposition on Pt for lithium ion battery
application,” Surf. Coat. Tech. 201 (2007) 7100-7106.
94
98. K.Z. Lin, and X.L. Wang, “Tin oxide and carbon composite
(Sn6O4(OH)4 / AG) as the anode in a lithium ion battery,” Tsinghua
Science & Technology 10 (2005) 554-560.
99. I. A. Courtney and J. R. Dahn, “Key factors controlling the
reversibility of the reaction of lithium with SnO2 and Sn2BPO6
glass,” J. Electrochem. Soc., 144 (1997) 2943-2948.