簡易檢索 / 詳目顯示

研究生: 楊富雄
Fu-Hsiung Yang
論文名稱: 600V垂直型超接面閘流體過壓保護元件的設計
The Design of 600V Vertical Super-Junction TSPDs
指導教授: 龔正
Jeng Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 82
中文關鍵詞: 突波保護超接面閘流體
外文關鍵詞: surge protector, super-junction, thyristor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的閘流體過壓保護元件 (TSPDs, Thyristor Surge Protective Devices) 在高壓應用時,必須降漂移區的摻雜濃度與提升厚度,相對的也增加導通電阻 (Ron),因此限制了閘流體過壓保護元件額定電流的大小。
    近年來,一種新的耐壓結構結構被發明並製作出來,這種結構稱為超接面 (Super-junction) 結構,他的主要特色為耐壓程度不會受摻雜濃的影響,因此,在提供高抗壓的同時,此種結構仍然擁有很高的摻雜濃度,因此其導通電阻比一般功率元件低很多。雖然有很多研究成功的將這種結構與功率金氧半電晶體 (Power MOS) 與絕緣閘雙極性電晶體 (IGBT) 結合且得到很好的效果,但很少有研究在探索這種結構應用在閘流體 (Thyristor)上的成果。
    在此篇論文中,我們嘗試將超接面 (Super-junction) 結構與傳統的閘流體過壓保護元件結合,並設計一個額定電壓為600V的超接面閘流體過壓保護元件 (Super-junction TSPD)。雖然特性改善並沒有預期中來的好,但其特性與和傳統過壓保護閘流體的比較仍會在本論文中完整的呈現出來。


    Conventional TSPDs (Thyristor Surge Protective Devices) have to reduce the doping of the drift region or increase its thickness for high voltage application. It causes the on resistance (Ron) rises rapidly and limits the rating current of the TSPD in high voltage application.
    In recent years, an innovative structure, called the super-junction was invented. The outstanding feature of this structure is that the structure maintains a high doping concentration at high voltage ratings. Therefore, the on resistance of this structure is much smaller than that of the conventional drift region. Although there are many researches successful combining the super-junction with power MOS and IGBT, rarely researches to discuss the result when the super-junction embedded in the Thyristor.
    In this thesis, we are trying to combine the super-junction with the thyristor, and designing a 600V super-junction TSPD. Though the performance of this device is not as good as expected, the characteristics and the comparison with the conventional TSPD are still presented in this thesis.

    Contents Abstract (Chinese) i Abstract (English) ii Acknowledgements iii Contents iv Table Captions vii Figure Captions ix Chapter 1 Introduction 1.1 Background 1 1.2 Thesis Outline 1 Chapter 2 Fundamental of Thyristor Surge Protective Devices (TSPDs) 2.1 Overview of Surge Protective Devices 3 2.1.1 Spark Gaps/Gap Discharge Tubes (GDTs) 3 2.1.2 Mental Oxide Varistors (MOVs) 4 2.1.3 Semiconductor Devices 5 2.1.4 Filters 6 2.1.5 Brief Summary of Surge Protective Devices 7 2.2 Analysis of Breakdown Mechanism 7 2.2.1 Avalanche Breakdown 8 2.2.2 Ionization Coefficient 8 2.2.3 Multiplication Coefficient 9 2.3 Thyristor Surge Protective Devices Basic Structure and operation 10 2.3.1 Basic Structure 11 2.3.2 Operative Mechanism 11 2.3.3 Basic I-V Curve Discussion 12 Figures 13 Chapter 3 The Design of The SJ-TSPD 3.1 Introduction 22 3.2 Overview of Super-junction Principles 22 3.2.1 BV-Ron relation of Conventional P-i-N Drift Region 23 3.2.2 BV-Ron relation of Super-junction Drift Region 23 3.2.3 The Influence of Charge Imbalance on Super-Junction 25 3.3 Design of Super-junction Thyristor Surge Protective Device 26 3.3.1 VT Design Principle 26 3.3.2 IH Design Principle 27 3.3.3 VB Design Principle 28 3.3.4 VBO and IBO Design Principle 28 3.3.5 IOFF Design Principle 28 3.4 Test Circuit of Surge Protective Devices 29 Figures 30 Chapter 4 Simulation of SJ-TSPD 4.1 Simulations of Conventional TSPD 35 4.1.1 Structure Simulation of Conventional TSPD 35 4.1.2 Electric Characteristics Simulation of Conventional TSPD 36 4.1.3 Structure and electric characteristics simulations of n-buffered TSPD 36 4.1.4 Property Comparison Between The Conventional TSPD and The n-buffered TSPD 37 4.2 Simulations of Super-Junction TSPD 38 4.2.1 Process Flow of Super-Junction TSPD 38 4.2.2 Electric Characteristics Simulation of The Super-Junction TSPD n39 4.2.3 Property comparison between the n-buffered TSPD and the SJ-TSPD 39 4.3 The Optimum Design and Simulation of The SJ-TSPD 40 4.3.1 Simulation of The Cell Pitch 40 4.3.2 Simulation of The Drift Region Concentration (NSJ) 41 4.3.3 Simulation of The Charge Imbalance in Drift Region 41 4.3.4 Simulation of The P-base 42 4.3.5 Simulation of The n-buffer 43 4.3.6 Optimize The SJ-TSPD 43 4.4 Transient Simulations 44 4.4.1 Transient Simulations of the n-buffered TSPD 44 4.4.2 Transient Simulations of the SJ-TSPD 45 Figures 46 Chapter 5 Conclusion 80 Figures 82 Reference 83

    Reference

    [1] Praveen M. Shenoy, Anup Bhalla and Gary M. Dolny, “Analysis of the effect of
    charge imbalance on the static and dynamic characteristics of the super junction
    MOSFET”, ISPSD’ 1999, pp.99-102, 1999.
    [2] AVANT! TSUPREM-4, Two-Dimensional Process Simulation Program,
    Version-2003.6.0
    [3] AVANT! MEDICI, Two-Dimensional Device Simulation Program,
    Version-2003.6.0
    [4] Telecom circuit protection. (2002, November). Bourns, inc. Retrieved February 22, 2006, from the World Wide Web: www.bournscircuitprotection.com
    [5] T. Harrison, “Lightning and surge protection – basic principles,” Telematics
    Limited, 2000.
    [6] Spark gap. Wikimedia Foundation, Inc. Retrieved February 22, 2006, from the
    World Wide Web: http://en.wikipedia.org/wiki/Spark_gap
    [7] Okaya’s surge protective devices – Gas Discharge Tube Arrester Series. (2003,
    September). Okaya electric America, inc. Retrieved February 24, 2006, from the
    World Wide Web: http://www.okaya.com
    [8] Alfredo, O., Alex, L., A. A. TSPD (thyristor surge protective devices).
    Semiconductor components industries, LLC (SCILLC). Retrieved February 24,
    2006, from the World Wide Web:http://onsemi.com
    [9] High Power Spark Gap Switch Development, Maxwell Lab.9244 Balboa Ave.
    San Diego, CA.
    [10] Metal oxide varistor. Wikimedia Foundation, Inc. Retrieved February 24, 2006,
    from the World Wide Web: http://en.wikipedia.org/wiki/Varistor
    [11] EMP Engineering and Design Principle, Bell Lab. pp.99-108, 1975.
    [12] 林澤義、馮政寧,氧化鋅變阻器突波吸收能力研究,中原學報,第26卷第
    3期,1998。
    [13] John, S. Transient suppressors, a competitive look. General semiconductor,
    application note no. 504.
    [14] Tyagi, S. K., “Development of Line Filter for EMP Applications, ” Proceedings
    of the International Conference on Electromagnetic Interference and
    Compatibility, pp.415-419, 1997.
    [15] EMP Engineering and Design Principle, Bell Lab. pp.106-108, 1975.
    [16] Lightning and surge protection – basic principles, MTL surge technologies.
    Application note, tan 1002.
    [17] B.J. Baliga, “Power Semiconductor Devices”, PWS. Publishing company, 1995.
    [18] H.Satho, Y.Shymoda, Two-Dimensional1 Analysis of Surge Response,
    IEEE,1996.
    [19] G. Dobey, M. Marz, J.P. Stengl, H. Strack, J. Tihanyi and H. Weber, “A new
    generation of high voltage MOSFETs breaks the limit line of silicon”, IEDM
    Tech Digest, pp.683-685, 1998.
    [20] L. Lorenz, G. Dobey, A. Knapp and M. Marz, “COOLMOSTM – a new
    milestone in high voltage power MOS”, ISPSD’ 1999, pp.3-10, 1999
    [21] COOLMOS, the second generation, Infineon Corporation.
    [22] Friedhelm D. Bauer, “The super junction bipolar transistor: a new silicon power
    device concept for ultra low loss switching applications at medium to high voltages”, Solid-State Electronics 48 (2004) 705–714.
    [23] T.Fujihira, “Theory of semiconductor superjunction devices”, Jpn. J. Appl. Phys.,
    Vol. 36, pp.6254-6262, 1997
    [24] X.B. Chen, P.A. Mawby, K. Board, C.A.T. Salama, “Theory of a novel
    voltage-sustaining layer for power devices”, Microelectronics journal 29 (1998)
    1005-1011.
    [25] X.B. Chen, power MOSFET and HVIC, publishing House of Dongnan
    University, Xinhua, Book Company, Jiangxu, 1990, pp. 156-170.
    [26] P. N. Kondekar, M. B. Patil and C.D. Parikh, “Breakdown Voltage and on resistance of superjunction power MOSFET:CoolMOS” Procd. IWPSD Vol.2, pp.1304-1306 ,2001
    [27] T.Fujihira, Y. Onishi, S.Iwamoto,T. Sato, “24 mΩ-cm-2 680V Silicon
    Superjunction MOSFET” ,Power Semiconductor Devices and ICs, 2002.
    Proceedings of the 14th International Symposium, pp241 – 244, 2002
    [28] Sabnis, A. G., VLSI Electronics Microstructure Science, AT&T Bell Lab.,
    pp.27-43, 1982.
    [29] Generic SLIC Device Surge Protection, Advanced Micro Devices, Inc.1999.
    [30] Hidetaka Satoh, “study on increasing the surge capability of a lightning surge
    protection semiconductor device”, IEEE 1993.
    [31] David Flores, Xavier Jorda, Salvador Hidalgo Juan Fernandez, Jose Rebollo,
    Jose Millan, Inaki Sierra, and Imanol Mazarredo, “An optimized bidirectional
    lightning surge protection semiconductor device”, IEEE 1999.
    [32] T.Fujihira, Y. Onishi, S.Iwamoto,T. Sato, “24 mΩ-cm-2 680V Silicon
    Superjunction MOSFET” ,Power Semiconductor Devices and ICs, 2002. Proceedings of the 14th International Symposium, pp241 – 244, 2002

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE