簡易檢索 / 詳目顯示

研究生: 林華經
Lin, Hua-Ching
論文名稱: 以超臨界流體技術製備生質柴油及改善電阻式隨機存取記憶體的效能
Preparation of Biodiesel and Improvement of RRAM (Resistant Random Access Memory) Performance by Supercritical Fluid Technology
指導教授: 談駿嵩
Tan, Chung-Sung
口試委員: 王竹方
汪上曉
吳文騰
陳昱劭
鄭西顯
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 159
中文關鍵詞: 超臨界流體生質柴油轉酯化電阻式隨機存取記憶體
外文關鍵詞: Supercritical Fluid, Biodiesel, Transesterification, Resistant Random Access Memory
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們分別以“與超臨界流體反應”及“在超臨界流體中反應”兩種不同型式的超臨界流體反應來進行製備生質柴油及改善電阻式隨機存取記憶體(RRAM)效能的研究。

    在第一章中,我們對超臨界流體的發展歷史、特性及其應用做一個簡單的介紹。

    在第二章中,我們首先檢視反應器金屬表面的催化作用。自Saka及Kusdiana提出了利用超臨界流體技術製備生質柴油的方法後,不需使用催化劑一直是被公認為此製程的重要優勢之一。然而,我們的實驗結果顯示:在超臨界甲醇與植物油的轉酯化反應中仍然因受到不鏽鋼反應器金屬表面的催化作用而使得反應速率加快,得到很高的轉化率;當不鏽鋼反應器金屬表面的催化活性喪失後,轉化率將降至極低。
    然後進行觸媒的篩選,在我們所篩選的數種金屬氧化物中,MnO2對此轉酯化反應具有最好的催化效果。在MnO2的催化作用下,植物油可在較溫和的操作條件下幾乎完全轉化為生質柴油;而在沒有觸媒催化的相同條件下,其轉化率則相當低。
    接著我們以超臨界/次臨界甲醇和椰子油及痲瘋籽油於連續式反應器中進行轉酯化,並於添加或不添加觸媒及共溶劑的情況下,分別對溫度、壓力、滯留時間及醇/油莫耳比等操作變數對轉酯化反應的影響逐一做系統性的探討。
    由實驗結果可知:無論是否存在觸媒,溫度對轉酯化反應的影響皆遠大於壓力的影響;且壓力對轉酯化反應的影響只有在當壓力遠小於甲醇的臨界壓力且醇/油混合物未形成單一均相時方為顯著。由視窗反應器目視觀察發現:在200 °C及4.14 MPa時,甲醇/椰子油混合物形成單一均相;且其視活化能亦由在低溫(180 °C以下)時之107.7 kJ/mol減少為在高溫(220 °C以上)時的35.3 kJ/mol,變得更有利於此轉酯化反應的進行。以上結果顯示:此轉酯化反應並不一定需要在超臨界甲醇、或是醇/油混合物的超臨界狀態下進行,而是只要有足夠高的溫度及壓力可以使得醇/油混合物形成均一相即可。
    在高溫操作時的最佳滯留時間與溫度成反比;溫度越高,則所需滯留時間越短。另在我們實驗所採用的12/1到60/1的醇/油莫耳比範圍中,轉化率及視反應速率k皆隨著醇油比的增加而增加,例如:當甲醇/椰子油莫耳比從12/1增加到60/1(5倍)時,其視反應速率k值亦自0.00476 s–1增為0.02118 s–1(4.45倍);我們並未發現有所謂最佳醇油比的存在。
    實驗最後,我們於連續式操作系統中加入共溶劑,其結果是對轉酯化反應無明顯影響甚至產生負面效果。這是由於共溶劑的加入,使得反應系統內的通量體積增加,造成反應物的濃度降低及滯留時間減少,這兩個不利因素會與因加入共溶劑而造成的醇油互溶度增加作用互相抵消。

    在第三章中,我們藉由超臨界流體處理技術來降低氧化矽基電阻式記憶體的操作電流。在120 oC的溫度下,利用超臨界二氧化碳的低黏度、低表面張力及高擴散性,使得水分子能輕易進入薄膜內部,進行晶界懸鍵的修補;由此使得電阻式記憶體薄膜中的傳導路徑變得不連續,而電阻式記憶體的導通電阻也因為薄膜中缺陷數目的減少而變大,造成操作電流顯著的下降。隨著元件操作功耗的降低,元件因為焦耳熱所引起的退化也會被改善。因此,超臨界流體處理技術可以改善電阻式記憶體的切換特性及操作效能,這對電阻式記憶體在次世代非揮發式記憶體的應用發展上有著極大的助益。
    在實驗中,我們利用超臨界二氧化碳來修補錫摻雜的二氧化矽(Sn:SiO2)薄膜的懸空鍵。經過超臨界流體處理的Sn:SiO2薄膜發生鈍化使得錫形成不連續的金屬絲,造成電流下降。此外,我們也利用此技術對以ITO透明導電薄膜作為電極的電阻式記憶體做處理,能有效降低其消耗功率及操作電壓。
    最後,我們以超臨界二氧化碳處理技術來調控TaN薄膜電阻之阻抗溫度係數(TCR)。經退火處理後,TaN薄膜電阻之阻抗溫度係數會由負的變成正的,但再經過超臨界二氧化碳處理之後,正的阻抗溫度係數又會變回負的。藉由超臨界流體技術與熱退火方式的組合最佳化,可以將TaN薄膜電阻器的阻抗溫度係數控制到接近於零,以適合汽車電子或其他高溫惡劣環境之應用。

    在第四章中,則是對本論文的內容作一總結。


    In this dissertation, both types of supercritical fluid reactions, “reaction with supercritical fluid” and “reaction in supercritical fluid”, were adopted for the study of preparation of biodiesel and improvement of resistant random access memory (RRAM) performance, respectively.

    In Chapter 1, a brief introduction to the development, properties, and applications of supercritical fluid was made.

    In the beginning of Chapter 2, the catalytic effect of metal reactor surface was investigated. Ever since Saka and Kusdiana proposed the method of preparation of biodiesel by supercritical fluid technology, “non-catalytic” has been recognized as one of the most advantages of this process. Nevertheless, our experimental results showed that, in the transesterification of vegetable oils with supercritical methanol, the reaction rate was indeed accelerated by the catalytic effect of stainless-steel reactor surface, resulting in a high conversion; after the deactivation of this catalytic ability, the biodiesel yield was decreased.
    Then we went on the screening of catalysts. Among various metal oxides tested in this study, MnO2 was found to be the most effective catalyst. The presence of MnO2 was essential for the complete conversion of vegetable oils to biodiesel under mild conditions; the conversion was relatively low during catalyst-free operation.
    Thereafter, transesterification of supercritical/subcritical methanol with coconut oil and jatropha oil were conducted in a continuous operation system. With or without the addition of catalyst and co-solvent, the effects of the operating variables, namely the temperature, pressure, residence time, methanol-to-oil molar ratio, on the yield of biodiesel were systematically examined.
    Our experimental results indicated that: regardless of the presence of catalyst, the effect of temperature on transesterification was more pronounced than that of pressure; the latter was apparent only at pressures far below the critical pressure of methanol and before the formation of a homogeneous liquid phase from the methanol/oil mixture. Through visual observation in a windowed-reactor, at 200 °C and 4.14 MPa, the methanol/coconut oil mixture formed a homogeneous liquid phase; the apparent activation energy decreased from 107.7 kJ/mol at temperatures below 180 °C to 35.3 kJ/mol at temperatures above 220 °C, more favorable for transesterification. The obtained results revealed that this transesterification does not necessarily have to be performed in supercritical methanol, nor in supercritical methanol/oil mixtures, but only at temperatures and pressures where a homogeneous liquid phase exists.
    The optimal residence time for the transesterification was dependent on the reaction temperature; higher temperatures required shorter residence times. The FAME yield and the apparent rate constant k both increased upon increasing the molar ratio, for example, when the molar ratio of methanol to coconut oil increased from 12/1 to 60/1 (fivefold), the apparent rate constant (k) also increased from 0.00476 to 0.02118 s–1 (4.45-fold); we did not, however, observe an optimal molar ratio within the range from 12 to 60.
    The effect of co-solvent in a continuous operation mode was investigated at the end of Chapter 2, and the experimental results showed that the effect of co-solvent on transesterification was negligible or even negative. The addition of co-solvent might enhance the miscibility between oils and methanol; on the other hand, it also increased the flux volume of transesterification , resulting in decreases in both the concentrations of reactants and residence time. Therefore, the overall effect of co-solvent in a continuous operation mode might be negligible or even negative.

    In Chapter 3, the operating current of silicon oxide-based RRAM was reduced by supercritical fluid processing (SFP) technology. At a temperature of 120 oC, with the facilities of low viscosity, low surface tension and high diffusivity of supercritical carbon dioxide, the water molecules could easily diffuse into the film and repair the dangling bonds of grain boundary; by SFP, the conduction path of RRAM film became discontinuous and its conduction resistance also increased due to the reduce of defects in the film, resulting in a significant decline in operating current. With the reduction of operation power consumption of RRAM, the degradation of IC caused by the Joule heat would therefore be improved. Thus, SFP techniques can improve the switching characteristics of RRAM and its operation performance, showing a great benefit on the development and applications of RRAM as next-generation non-volatile memory.
    In the experiment, the dangling bonds of Tin-doped Silica (Sn:SiO2) film were repaired by supercritical carbon dioxide (SCCO2). A discontinuous metal filament would be formed in Sn:SiO2 film through SCCO2 passivation process, causing the device current declined. In addition, we also use this technique to treat the RRAM with ITO transparent conductive electrode to effectively reduce the power consumption and operating voltage of device.
    At last, SCCO2 treatment technology was used to manipulate the temperature coefficient of resistance (TCR) of TaN thin-film resistors. After annealing process, the TCR value of TaN film resistor was changed from negative to positive; by SCCO2 treatment, the positive TCR value turned back to negative again. Through optimization of supercritical fluid technology combined with thermal annealing method, the TCR value of TaN thin-film resistor could be modulated to close to zero, making it conform the requirements of a stricter specification for car-used electronic applications or other harsh environments of high temperature.

    In Chapter 4, a summary of the content in this dissertation was made.

    誌謝 --------------------------------------------------------------------------- I 中文摘要 --------------------------------------------------------------------------- II 英文摘要 --------------------------------------------------------------------------- V 目錄 --------------------------------------------------------------------------- VIII 表目錄 --------------------------------------------------------------------------- X 圖目錄 --------------------------------------------------------------------------- XI 第一章 超臨界流體簡介------------------------------------------------------ 1 第一節 超臨界流體之發展歷史--------------------------------------------- 1 第二節 超臨界流體之特性--------------------------------------------------- 6 第三節 超臨界流體之應用--------------------------------------------------- 11 第二章 以超臨界甲醇轉酯化法製備生質柴油--------------------------- 18 第一節 緒論--------------------------------------------------------------------- 18 第二節 文獻回顧--------------------------------------------------------------- 20 2.2.1 製備生質柴油的技術------------------------------------------------ 20 2.2.2 超臨界流體技術製備生質柴油的反應機構和動力學--------- 26 2.2.3 影響超臨界流體技術製備生質柴油的因素--------------------- 29 第三節 實驗方法--------------------------------------------------------------- 42 2.3.1 實驗規劃--------------------------------------------------------------- 42 2.3.2 實驗設備與儀器------------------------------------------------------ 46 2.3.3 實驗藥品--------------------------------------------------------------- 48 2.3.4 實驗步驟--------------------------------------------------------------- 50 第四節 實驗結果與討論------------------------------------------------------ 53 主題一 不鏽鋼反應器對超臨界轉酯化反應之影響--------------------- 53 2.4.1.1 批次式反應器的結果------------------------------------------------ 53 2.4.1.2 連續式反應器的結果------------------------------------------------ 54 主題二 觸媒催化作用下的椰子油與超臨界甲醇之轉酯化反應------ 57 2.4.2.1 觸煤之篩選------------------------------------------------------------ 57 2.4.2.2 滯留時間對轉酯化反應的影響------------------------------------ 58 2.4.2.3 溫度對轉酯化反應的影響------------------------------------------ 60 2.4.2.4 醇/油莫耳比對轉酯化反應的影響-------------------------------- 63 2.4.2.5 壓力對轉酯化反應的影響------------------------------------------ 66 2.4.2.6 添加固態觸媒的好處------------------------------------------------ 69 主題三 痲瘋籽油與超臨界甲醇之轉酯化反應--------------------------- 71 2.4.3.1 去除反應器金屬表面的催化活性--------------------------------- 71 2.4.3.2 溫度及滯留時間對轉酯化反應的影響--------------------------- 72 2.4.3.3 壓力對轉酯化反應的影響------------------------------------------ 73 2.4.3.4 醇/油莫耳比對轉酯化反應的影響-------------------------------- 75 2.4.3.5 添加觸媒對轉酯化反應的影響------------------------------------ 76 2.4.3.6 加入共溶劑對轉酯化反應的影響--------------------------------- 78 第五節 結論--------------------------------------------------------------------- 80 第三章 以超臨界二氧化碳改善電阻式隨機存取記憶體的效能------ 82 第一節 緒論--------------------------------------------------------------------- 82 第二節 文獻回顧--------------------------------------------------------------- 84 3.2.1 記憶體簡介------------------------------------------------------------ 84 3.2.2 絕緣體載子傳輸機制------------------------------------------------ 91 3.2.3 以超臨界二氧化碳處理薄膜電晶體------------------------------ 98 第三節 實驗方法--------------------------------------------------------------- 100 3.3.1 實驗規劃--------------------------------------------------------------- 100 3.3.2 實驗設備與儀器------------------------------------------------------ 101 3.3.3 實驗藥品--------------------------------------------------------------- 102 3.3.4 實驗步驟--------------------------------------------------------------- 103 第四節 實驗結果與討論------------------------------------------------------ 105 主題一 以超臨界二氧化碳處理錫摻雜二氧化矽薄膜之電阻式隨機存取記憶體------------------------------------------------------------ 105 3.4.1.1 電性檢測與分析------------------------------------------------------ 105 3.4.1.2 薄膜材料分析--------------------------------------------------------- 116 3.4.1.3 建立以超臨界二氧化碳修補薄膜缺陷的機制模型------------ 121 主題二 以超臨界二氧化碳處理ITO/Gd:SiO2/TiN RRAM---------- 124 3.4.2.1 電性檢測與分析------------------------------------------------------ 124 3.4.2.2 材料分析--------------------------------------------------------------- 131 3.4.2.3 建立以超臨界二氧化碳修補薄膜缺陷的機制模型------------ 134 主題三 以超臨界二氧化碳來調控氮化鉭薄膜電阻的阻抗溫度係數 136 3.4.3.1 以不同方式處理後的TaN TFR元件的TCR值測定---------- 136 3.4.3.2 以不同方式處理後的TaN TFR元件的電性分析-------------- 138 3.4.3.3 建立不同處理方法的機制模型------------------------------------ 138 第五節 結論--------------------------------------------------------------------- 140 第四章 總結與展望------------------------------------------------------------ 142 參考文獻 --------------------------------------------------------------------------- 145 著作目錄 --------------------------------------------------------------------------- 160

    1. McHugh MA, Krukonis VJ. Supercritical Fluid Extraction: Principle and Practice. Butterworth Publishers; 1986.
    2. Stahl E, Quirin KW, Gerard D. Dense Gases for Extraction and Refining. Heidelberg Germany: Springer-Verlag Berlin; 1988.
    3. Francis AW. Ternary Systems of Liquids Carbon Dioxide. J Phys Chem 1954; 58: 1099-1114.
    4. Pellerin P. Supercritical Fluid Extraction of National Raw Materials for the Flavour and Perfume Industry. Perfume Flavor 1991; 16: 37-39.
    5. Rizvi SSH, Benkind AL. A Process for Cholesterol Reduction and Fractionation of Animal Fats Using Supercritical Fluid. Proceedings of Fifth International Congress on Engineering and Foods, Cologne: Germany; 1989.
    6. Rizvi SSH, Lim S, Nikoopour H, Singh M, Yu Z. Supercritical Fluid Processing of Milk Fat, in Engineering and Foods, Spicess WEL and Schubert H (Ed). New York: Elsevier Applied Science Publishers; 1989.
    7. Zosel K. Process for the Decaffeination of Coffee. US Patent: 4,274,570, January 27, 1981.
    8. Hubert P, Vitzthum OG. Fluid extraction of hops, spices, and tobacco with supercritical gases. Angew Chem Int Ed Eng 1978; 17:710.
    9. Rizvi SSH, Daniels JA, Benado AL, Zollweg JA. Supercritical Fluid Extraction: Operating principles and Food Applications. Food Technology 1986; 7: 57-64.
    10. 潘怡瑾,“以超臨界二氧化碳萃取中藥藥材柏子仁之研究”,國立台灣大學,碩士論文,2000年。
    11. 郭博堯,“背景分析-京都議定書的爭議與妥協”,國政研究報告,2001年。
    12. 新興重要策略性產業屬於製造業及技術服務業部分獎勵辦法,中華民國95年1月1日臺經院字第0940095633號令修正公布。
    13. Yoshinori A, Lu CY. Supercritical fluid extraction with carbon dioxide and ethylene. Fluid Phase Equil 1983; 14: 147.
    14. Bartle KD, Boddington T, Clifford AA, Hawthorne SB. The Effect of solubility on the kinetics of dynamic supercritical-fluid extraction. J Supercritical Fluids 1992; 5: 207.
    15. Bott TR. Chemistry Industries 1982; 19: 394.
    16. Chang CJ, Randolph AD, Craft NE. Separation of β-Carotene Mixtures Precipitated from Liquid Solvents with High-Pressure CO2. Biotechnology Progress 1991; 7: 275-8.
    17. Chang H, Morrell DG. Solubility of methoxy-1-tetralone and methyl nitro-benzoate isomers and their mixtures in supercritical carbon dioxide. J Chem Eng Data 1985; 30: 74-8.
    18. Dobbs JM, Wong JM, Johnston KP. Non-polar co-solvents for solubility enhancement in supercritical fluid carbon dioxide. J Chem Eng Data 1986; 31: 303-8.
    19. Hammam H. Solubility of pure lipids in supercritical carbon dioxide. J Supercritical Fluids 1992; 5: 101.
    20. Randolph TW. Supercritical fluid extractions in biotechnology. Tibtech 1990; 8: 78.
    21. Wong JM, Johnston KP. Solubilization of bio-molecules in carbon dioxide based supercritical solutions. Biotech Press 1986; 2: 29.
    22. Hyatt JA. Liquid and Supercritical Carbon Dioxide as an Organic Solvents. J Org Chem 1984; 49: 5097.
    23. Brogle H. CO2 as a solvent: its properties and applications. Chemistry and Industry 1982; 11: 385-90.
    24. Chordia L, Robey R. Industrial applications of supercritical fluids. Proceedings of the 5th International Symposium on Supercritical Fluids, Westin Atlanta North Atlanta, Georgia, USA, April 2000.
    25. 郎慶勇、魏建謨、羅建苗、瞿港華,“超臨界流體萃取技術的應用及展望”,科儀新知,20,5,pp.90-97,1999年。
    26. Perrut M. Supercritical fluid applications, industrial developments, and economic issues. Proceedings of the 5th International Symposium on Supercritical Fluids, Westin Atlanta North Atlanta, Georgia, USA, April 2000.
    27. 江淑芬, “淺談中草藥世界市場概況”,科技與生活,pp.38-41,2000年。
    28. Zosel K. Process for deodorisation fats and oils. US patent: 4,156, 688, 1979.
    29. Lack E, Seidlitz H. Commercial scale decaffeination of coffee and tea using supercritical CO2, in Extraction of Natural Products Using Near-Critical Solvents, Edited by King MB and Bott TR. London : Chapman & Hall; 1993.
    30. Kamat S, Critchley G, Beckman EJ, Russell AJ. Bio-catalytic synthesis of acrylates in organic solvent and supercritical fluids: III. does carbon dioxide covalently modify enzymes. Biotechnology and Bioengineering 1995; 46: 610.
    31. Gardner DS. Industrial scale hop extraction with liquid CO2. Chemistry and Industry 1982; 19: 402.
    32. Hierro MTG, Santa Maria G. Supercritical fluid extraction of vegetable and animal fats with CO2 Mini Review. Food Chemistry 1992; 45: 189.
    33. Temelli F, Chen CS, Braddock RJ. Supercritical fluid extraction in citrus oil processing. Food Technology 1988; 145.
    34. Sakaki K, Yokochi T, Suzuki O, Hakuda T. Supercritical fluid extraction of fungal oil using CO2 , N2O, CHF2 and SF6. JAOCS 1990; 67: 533.
    35. Stahl E, Schutz E, Mangold HK. Extraction of seed oils with liquid and supercritical carbon dioxide. J Agric Food Chem 1980; 28: 1153.
    36. 廖怡禎, “超臨界流體技術工業化應用實例”,超臨界流體應用技術研討會論文集,台灣,2002年。
    37. Wai CM, Wang SJ. Supercritical Fluid Extraction: Metals as Complexes, Chromatography A 1997; 785: 369.
    38. Via JC, Braue CL, Talor LT. Supercritical Fluid Fractionation of a Low Molecular Weight, High-Density Polyethylene Wax Using Carbon Dioxide, Propane, and Propane-Modified Carbon Dioxide. Anal Chem 1994; 66: 603.
    39. McNally MEP, Deardorff CM, Fahmy TM. ACS Symp Ser 1992; 488: 165.
    40. Langenfeld JJ, Burford MD, Hawthorne SB, Miller DJ. Effects of collection solvent parameters and extraction cell geometry on supercritical fluid extraction efficiencies. J Chromatography 1992; 594: 297-307.
    41. Kaupp G. Reactions in Supercritical Carbon Dioxide. Angew Chem Ind Ed Engl 1994; 33: 1452.
    42. Johnston KP, Haynes C. Extreme solvent effects on reaction rate constants at supercritical fluid conditions. J AICHE 1987; 33: 2017.
    43. 郭子禎,“超臨界二氧化碳清洗技術簡介”,超臨界流體應用技術研討會論文集,台灣,2002年。
    44. 盧昱彰、陳明德、陳政群、邱創弘,“用超臨界流體技術去除晶圓奈米污染物”,The 3rd International conference on the Supercritical Fluid Technology,台灣,2004年。
    45. 連培榮、凌永健,“超音波輔助超臨界二氧化碳去光阻研究”,The 3rd International conference on the Supercritical Fluid Technology,台灣,2004年。
    46. 張鼎張、蔡宗鳴、張冠張、朱天健、徐詠恩,“氧化矽基電阻式記憶體”,電子資訊,18,2,pp.5-20,2012年。
    47. Sun YP, Rollins HW. Preparation of polymer-protected semiconductor nanoparticles through the rapid expansion of supercritical fluid solution. Chemical Physics Letters 1998; 288: 585-8.
    48. 吳弦聰、李明哲、林河木,“超臨界抗溶劑法製備次微米級blue 15:6顏料微粒”,The 3rd International conference on the Supercritical Fluid Technology,台灣,2004年。
    49. Hiroya I, Mitsuya S, Akiyoshi Y, Yutaka O. Inactivation of enzymes and decomposition of -helix structure by supercritical carbon dioxide micro-bubble method. J Agric Food Chem 1996; 44: 2646.
    50. 孫璐西、廖怡禎,“超臨界流體技術在食品工業中之應用”,化工技術,6,148,1997年。
    51. 陳毓婷、邱永和、陳啟銘、張夢揚,“以超臨界二氧化碳殺滅冠狀病毒及日本腦炎病毒之研究”,The 3rd International conference on the Supercritical Fluid Technology,台灣,2004年。
    52. De Giorgi MR, Cadoni E, Maricca D, Piras A. Dyeing Polyester Fibers with Disperse Dyes in Supercritical CO2. Dyes and Pigments 2000; 45: 75~9.
    53. Marchetti JM, Miguel VU, Errazu AF. Possible methods for bio-diesel production. Renew Sustain Energy Rev 2007; 11: 1300-11.
    54. Ma F, Hanna MA. Bio-diesel production: a review. Bioresource Technology 1999; 70: 1-15.
    55. Fukuda H, Kondo A, Noda H. Bio-diesel fuel production by transesterification of oils. J Biosci Bioeng 2001; 92(5): 405-16.
    56. Zhang Y, Dube MA, McLean DD, Kate M. Bio-diesel production from waste cooking oil: Process design and technological assessment. Bioresource Technology 2003; 89: 1-16.
    57. Freedman B, Pryde EH, Mounts TL. Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 1984; 61(10): 1638-43.
    58. Noureddini H, Zhu D. Kinetics of transesterification of soybean oil. J Am Oil Chem Soc 1997; 74(11): 1457-63.
    59. Freedman B, Butterfield R, Pryde E. Transesterification kinetics of soybean oil. J Am Oil Chem Soc 1986; 63(10): 1375-80.
    60. Saka S, Kusdiana D. Bio-diesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 2001; 80: 225-31.
    61. Kusdiana D, Saka S. Effects of water on bio-diesel fuel production by supercritical methanol treatment. Bioresource Technology 2004; 91: 289-95.
    62. Warabi Y, Kusdiana D, Saka S. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technology 2004; 91: 283-7.
    63. Wang LY, He HY, Xie ZF, Yang JC, Zhu SL. Transesterification of the crude oil of rapeseed with NaOH in supercritical and sub-critical methanol. Fuel Process Technology 2007; 88: 477-81.
    64. Yin JZ, Xiao M, Wang AQ, Xiu ZL. Synthesis of bio-diesel from soybean oil by coupling catalysis with sub-critical methanol. Energy Converse Manage 2008; 49: 3512-16.
    65. Demirbas A. Bio-diesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Converse Manage 2009; 50: 923-7.
    66. Wang CW, Zhou JF, Chen W, Wang WG, Wu YX. Effect of weak acids as a catalyst on the transesterification of soybean oil in supercritical methanol. Energy Fuels 2008; 22: 3479-83.
    67. Demirbas A. Bio-diesel from sunflower oil in supercritical methanol with calcium oxide. Energy Converse Manage 2007; 48: 937-41.
    68. Wang LY, Yang JC. Transesterification of soybean oil with nano-MgO or not in supercritical and sub-critical methanol. Fuel 2007; 86: 328-33.
    69. Demirbas A. Bio-diesel from vegetable oils with MgO catalytic transesterification in supercritical methanol. Energy Sources Part A 2008; 30: 1645-51.
    70. Yoo SJ, Lee HS, Veriansyah B, Kim JH, Kim JD, Lee YW. Synthesis of bio-diesel from rapeseed oil using supercritical methanol with metal oxide catalysts. Bioresource Technology 2010;101: 8686-9.
    71. Yin JZ, Ma Z, Hu DP, Xiu ZL, Wang TH. Bio-diesel production from sub-critical methanol transesterification of soybean oil with sodium silicate. Energy Fuels 2010; 24: 3179-82.
    72. Yin JZ, Ma Z, Shang ZY, Hu DP, Xiu ZJ. Bio-diesel production from soybean oil transesterification in sub-critical methanol with K3PO4 as a catalyst. Fuel 2012; 93: 284-7.
    73. Han HW, Cao WL, Zhang JC. Preparation of bio-diesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process Biochem 2005; 40: 3148-51.
    74. Cao WL, Han HW, Zhang JC. Preparation of bio-diesel from soybean oil using supercritical methanol and co-solvent. Fuel 2005; 84: 347-51.
    75. Anon. Filtered used frying fat powers diesel fleet. J Am Oil Chem Soc 1982; 59(10): 780-1.
    76. Bartholomew D. Vegetable oil fuel. J Am Oil Chem Soc 1981; 58(4): 286-8.
    77. Pryde EH. Vegetable oil as diesel fuels: Overview. J Am Oil Chem Soc 1983; 60(8): 1557-8.
    78. Adams C, Peters JF, Rand MC, Schroer BJ, Ziemke MC. Investigation of soybean oil as a diesel fuel extender-Endurance tests. J Am Oil Chem Soc 1983; 60(8): 1574-9.
    79. Pryor RW, Hanna MA, Schinstock JL, Bashford LL. Soybean oil fuel in a small diesel engine. Trans ASAE 1983; 26(2): 333-42.
    80. Schlautman NJ, Schinstock JL, Hanna MA. Unrefined expelled soybean oil performance in a diesel engine. Trans ASAE 1986; 29(1): 70-3.
    81. Schlick ML, Hanna MA, Schinstock JL. Soybean and sunflower oil performance in a diesel engine. Trans ASAE 1988; 31(5): 1345-9.
    82. Schwab AW, Bagby MO, Freedman B. Preparation and Properties of Diesel Fuels from Vegetable Oils. Fuel 1987; 66: 1372-8.
    83. Pryde EH. Vegetable oils as fuel alternatives–symposium overview. J Am Oil Chem Soc 1984; 61(10): 1609-10.
    84. Ziejewski M, Kaufman KR, Schwab AW, Pryde EH. Diesel engine evaluation of a nonionic sunflower oil-aqueous ethanol micro-emulsion. J Am Oil Chem Soc 1984; 61(10): 1620-6.
    85. Goering CE, Fry B. Engine durability screening test of a diesel oil/soy oil/alcohol micro-emulsion fuel. J Am Oil Chem Soc 1984; 61(10): 1627-32.
    86. Schwab AW, Dykstra GJ, Selke E, Sorenson SC, Pryde EH. Diesel Fuel From Thermal Decomposition of Soybean Oil. J Am Oil Chem Soc 1988; 65(11): 1781-6.
    87. Billaud F, Dominguez V, Broutin P, Busson C. Production of Hydrocarbons by Pyrolysis of ethyl Esters from Rapeseed Oil. J Am Oil Chem Soc 1995; 72(10): 1149-54.
    88. Crossley TD, Heyes TD, Hudson BJF. The effect of heat on pure triglycerides. J Am Oil Chem Soc 1962; 39(1): 9-14.
    89. Niehaus RA, Goering CE, Savage LD, Sorenson SC. Cracked soybean oil as a fuel for a diesel engine. Trans ASAE 1986; 29(3): 683-9.
    90. Sharma YC, Singh B, Upadhyay SN. Advancements in development and characterization of bio-diesel: a review. Fuel 2008; 87: 2355-73.
    91. Leung DYC, Wu X, Leung MKH. A review on bio-diesel production using catalyzed transesterification, Appl Energy 2010; 87: 1083-95.
    92. Vyas AP, Verma JL, Subrahmanyam N. A review on FAME production processes. Fuel 2010; 89: 1-9.
    93. Anitescu G, Bruno TJ. Liquid bio-fuels: fluid properties to optimize feedstock selection, processing, refining/blending, storage/transportation, and combustion. Energy Fuels 2012; 26: 324-48.
    94. Ataya F, Dube M A, Ternan M. Acid-catalyzed transesterification of canola oil to bio-diesel under single- and two-phase reaction conditions. Energy Fuels 2007; 21(4): 2450-9.
    95. Canakci M, Van Gerpen J. Bio-diesel production via acid catalysis. Trans ASAE 1999; 42(5): 1203-10.
    96. Zheng S, Kates M, Dube MA, McLean DD. Acid–catalyzed production of bio-diesel from waste frying oil. Biomass Bioenergy 2006; 30: 267-72.
    97. Liu YJ, Lotero E, Goodwin JG. Effect of water on sulfuric acid catalyzed esterification. J Mol Catal 2006; 245: 132-40.
    98. Goff MJ, Bauer NS, Lopes S, Sutterlin WR, Suppes GJ. Acid-catalyzed alcoholysis of soybean oil. J Am Oil Chem Soc 2004; 81(4): 415-20.
    99. Canakci M, Van Gerpen J. A pilot plant to produce bio-diesel from high free fatty acid feed-stocks. Trans ASAE 2003; 46(4): 945-54.
    100. Zhang Y, Dube MA, McLean DD, Kates M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource Technology 2003; 90: 229-40.,
    101. Kaieda M , Samukawa T, Matsumoto T, Ban K, Kondo A, Shimada Y, Noda H, Nomoto F, Suka K, Izumoto E, Fukuda H. Bio-diesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. Biosci 1999; 88: 627-31.
    102. Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y. Continuous production of bio-diesel fuel from vegetable oil using immobilized Candida Antarctica lipase. J Am Oil Chem Soc 2000; 77(4): 355-60.
    103. Nelson LA, Folgia TA, Marmer WN. Lipase-catalyzed production of bio-diesel. J Am Oil Chem Soc 1996; 73(9): 1191-5.
    104. Ting WJ, Huang CM, Giridhar N, Wu WT. An enzymatic/acid-catalyzed hybrid process for bio-diesel production from soybean oil. J Chin Inst Chem Eng 2008; 39(3): 203-10.
    105. Li LL, Du W, Liu DH, Wang L, Li ZB. Lipase-catalyzed transesterification of rapeseed oils for bio-diesel production with a novel organic solvent as the reaction medium. J Mol Catal B: Enzym 2006; 43: 58-62.
    106. Noureddini H, Gao X, Philkana RS. Immobilized Pseudomomascepacia Lipase for Bio-diesel Fuel Production from Soybean Oil. Bioresource Technology 2005; 96: 769-77.
    107. Demirbas A. Bio-diesel from vegetable oils via transesterification in supercritical methanol. Energy Converse Manage 2002; 43: 2349-56.
    108. Bunyakiat K, Makmee S, Sawangkeaw R, Ngamprasertsith S. Continuous production of bio-diesel via transesterification from vegetable oils in supercritical methanol. Energy Fuels 2006; 20: 812-7.
    109. Pinnarat T, Savage PE. Assessment of non-catalytic bio-diesel synthesis using supercritical reaction conditions. Ind Eng Chem Res 2008; 47: 6801-8.
    110. Saka S, Isayama Y. A new process for catalyst-free production of bio-diesel using supercritical methyl acetate. Fuel 2009; 88: 1307-13.
    111. Sawangkeaw R, Bunyakiat K, Ngamprasertsith S. A review of laboratory-scale research on lipid conversion to bio-diesel with supercritical methanol (2001–2009). J Supercritical Fluids 2010; 55: 1-13.
    112. Lee JS, Saka S. Bio-diesel production by heterogeneous catalysts and supercritical technologies. Bioresource Technology 2010;101: 7191-200.
    113. de Boer K, Bahri PA. Supercritical methanol for fatty acid methyl ester production: A review. Biomass Bioenergy 2011; 35: 983-91.
    114. Tan KT, Lee KT. A review on supercritical fluids (SCF) technology in sustainable bio-diesel production: Potential and challenges. Renew Sustain Energy Rev 2011; 15: 2452-6.
    115. Kusdiana D, Saka S. Kinetics of transesterification in rapeseed oil to bio-diesel fuel as treated in supercritical methanol. Fuel 2001; 80: 693-8.
    116. Madras G, Kolluru C, Kumar R. Synthesis of bio-diesel in supercritical fluids. Fuel 2004; 83: 2029-33.
    117. He HY, Wang T, Zhu SL. Continuous production of bio-diesel fuel from vegetable oil using supercritical methanol process. Fuel 2007; 86: 442-7.
    118. Encinar JM, Ramiro Gonzalez JF, Sabio EMJ. Preparation and properties of bio-diesel from Cynara cardunculus L. oil. Ind Eng Chem Res 1999; 38: 2927-31.
    119. Anitescu G, Tavlarides LL. Methanol as a co-solvent and for the oxidation kinetics of 3,3',4,4'-tetrachlorobiphenyl decomposition in supercritical water. Ind Eng Chem Res 2002; 41(1): 9-21.
    120. 牟天成、 韓布興,“超臨界流體的共溶劑效應和混合流體研究進展”,化學進展,18,1,pp.19-23,2006年。
    121. Kim HJ, Kang BS, Kim MJ, Young MP, Kim DK, Lee JS, Lee KY. Transesterification of vegetable oil to bio-diesel using heterogeneous base catalyst. Catal Today 2004; 93-95, 315-20.
    122. Yin JZ, Xiao M, Song JB. Bio-diesel from soybean oil in supercritical methanol with co-solvent. Energy Converse Mange 2008; 49: 908-12.
    123. Boocock DGB, Konar SK, Mao V, Lee C, Buligan S. Fast formation of high-purity methyl esters from vegetable oils. J Am Oil Chem Soc 1998; 75(9): 1167-72.
    124. Patil PD, Gude VG, Deng S. Transesterification of Camelina sativa oil using supercritical and sub-critical methanol with co-solvents. Energy Fuels 2010; 24: 746-51.
    125. Tan KT, Lee KT, Mohamed AR. Effects of free fatty acids, water content and co-solvent on bio-diesel production by supercritical methanol reaction. J Supercritical Fluids 2010; 53: 88-91.
    126. Hegel P, Mabe G, Pereda S. Phase transitions in a bio-diesel reactor using supercritical methanol. Ind Eng Chem Res 2007; 46: 6360-5.
    127. Carriquiry MA, Du XD, Timilsoina GR. Second generation bio-fuels: economics and policies. Energy Policy 2011; 39: 4222-34.
    128. Koh MY, Mohd Ghazi TI. A review of bio-diesel production from Jatropha curcas L. oil. Renew Sustain Energy Rev 2011; 15: 2240-51.
    129. Mofijur M, Masjuki HH, Kalam MA, Hazrat MA, Liaquat AM, Shahabuddin M. et al. Prospects of bio-diesel from Jatropha in Malaysia. Renew Sustain Energy Rev 2012; 16: 5007-20.
    130. Chen YH, Chen JH, Luo YM, Shang NC, Chang CH, Chang CY. et al. Property modification of Jatropha oil bio-diesel by blending with other bio-diesels or adding antioxidants. Energy 2011; 36: 4415-21.
    131. Razzaq T, Kappe CO. Continuous Flow Organic Synthesis under High-Temperature/Pressure Conditions. Chem Asian J 2010; 5: 1274-89.
    132. Levenspiel O. Chemical Reaction Engineering. 3rd edition. New Jersey: John Wiley & Sons; 1999.
    133. Bartholomew CH. Mechanisms of catalyst deactivation. Appl Catal A 2001; 212: 17-60.
    134. Dasari MA, Goff MJ, Suppes GJ. Non-catalytic alcoholysis kinetics of soybean oil. J Am Oil Chem Soc 2003; 80(2): 189-92.
    135. Kusdiana D, Saka S. Catalytic effect of metal reactor in transesterification of vegetable oil. J Am Oil Chem Soc 2004; 81: 103-4.
    136. He HY, Sun SY, Wang T, Zhu SL. Transesterification kinetics of soybean oil for production of bio-diesel in supercritical methanol. J Am Oil Chem Soc 2007; 84: 399-404.
    137. Pinnarat T, Savage PE. Non-catalytic esterification of oleic acid in ethanol. J Supercritical Fluids 2010; 53: 53-9.
    138. 洪英哲,“以超臨界轉酯化法製備生質柴油之研究”,國立清華大學,碩士論文,2010年。
    139. Jiang JJ, Tan CS. Bio-diesel production from coconut oil in supercritical methanol in the presence of co-solvent. J Taiwan Inst Chem Eng 2012; 43: 102-7.
    140. Lin HC, Tan CS. Continuous transesterification of coconut oil with pressurized methanol in the presence of a heterogeneous catalyst. J Taiwan Inst Chem Eng 2014; 45: 495-503.
    141. Hawash S, Kamal N, Zaher F, Kenawi O, el Diwani G. Bio-diesel fuel from Jatropha oil via non-catalytic supercritical methanol transesterification. Fuel 2009; 88: 579-82.
    142. 江建忠,“利用超臨界流體技術製備生質柴油之研究”,國立清華大學,碩士論文,2008年。
    143. Sawangkeaw R, Bunyakiat K, Ngamprasertsith S. Effect of co-solvents on production of bio-diesel via transesterification in supercritical methanol. Green Chem 2007; 9: 679-85.
    144. Bertoldi C, da Silva C, Bernardon JP, Corazza ML, Filho LC, Oliveira JV. et al. Continuous production of bio-diesel from soybean oil in supercritical ethanol and carbon dioxide as co-solvent. Energy Fuels 2009; 23: 5165-72.
    145. Imahara H, Xin J, Saka S. Effect of CO2/N2 addition to supercritical methanol on reactivity and fuel qualities in bio-diesel production. Fuel 2009; 88: 1329-32.
    146. Meijer GI. Materials science - Who wins the nonvolatile memory race?. Science 2008; 319: 1625-6.
    147. 蔡濬名,“氧化鋅薄膜於非揮發電阻式記憶體特性之研究”, 國立清華大學,碩士論文, 2008年。
    148. Kozicki MN, Gopalan C, Balakrishnan M, Mitkova M. A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte. IEEE Trans Nanotechnology 2006; 5: 535-44.
    149. Zhang L. The parasitic effects induced by the contact in RRAM with MIM structure. ICSICT Conference 2008; 932-5.
    150. Schindler C, Thermadam SCP, Waser R, Kozicki MN. Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans Electron Devices 2007; 54: 2762-8.
    151. 何英豪,“SiOx薄膜之電阻式記憶體電阻轉換特性研究”, 國立清華大學,碩士論文,2009年。
    152. 許峻銘,“氧化銅薄膜於非揮發電阻式記憶體特性之研究”,國立高雄應用科技大學, 碩士論文,2009年。
    153. Buck DA. Ferroelectrics for Digital Information Storage and Switching. Massachusetts Institute of Technology, Dept of Electrical Engineering, Master Thesis 1952.
    154. Thakoor S, Thakoor AP. Optically Addressed Ferroelectric Memory with Nondestructive Readout. Appl Opt 1995; 34: 3136-44.
    155. Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature 2008; 453: 80-3.
    156. Szot K, Speier W, Bihlmayer G, Waser R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 2006; 5: 312-20.
    157. Ling Q, et al. Polymer electronic memories: Materials, devices and mechanisms. Prog Polym Sci 2008; 33: 917-78.
    158. Hickmott TW. Memory States in Electroformed Mini Diodes – Comment. Int J Electron 1995; 78: 641-4.
    159. Kim KM, Choi BJ, Hwang CS. Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films. Appl Phys Lett 2007; 90: 242906.
    160. Sheu SS, et al. Fast-Write Resistive RAM (RRAM) for Embedded Applications. IEEE Des Test Compute 2011; 28: 64-71.
    161. Sze S, Ng KK. Physics of semiconductor devices. 3rd edition. Wiley-Blackwell; 2007.
    162. Zaima S, Furuta T, Koide Y, Yasuda Y, Lida M. Conduction Mechanism of Leakage Current in Ta2O5 Films on Si Prepared by LPCVD. J Electrochem Soc 1990; 137: 2876-9.
    163. Goux L, Lisoni JG, Wang XP, Jurczak M, Wouters DJ. Optimized Ni Oxidation in 80-nm Contact Holes for Integration of Forming-Free and Low-Power Ni/NiO/Ni Memory Cells. IEEE Trans Electron Devices 2009; 56: 2363-8.
    164. Wanger CD, Moulder JF, Davis LE, Riggs WM. Handbook of X-ray Photoelectron Spectroscopy. 1st edition. Perking-Elmer Corporation (Physical Electronics Division); 1979.
    165. Liang LY, Liu ZM, Cao HT, et al. Improvement of Phase Stability and Accurate Determination of Optical Constants of SnO Thin Films by Using Al2O3 Capping Layer. ACS Appl Mater Interfaces 2010; 2: 1060-5.
    166. Fujita K, Oya A, Benoit R, Beguin F. Structure and mechanical properties of methyltrimethoxysilane-treated taeniolite films. J Mater Sci 1996; 31: 4609-15.
    167. Kanedo Y, Suginohara Y. Lasurface Database Pub No. 1977; 135: 285–89.
    168. Tsai C, et al. A low temperature fabrication of HfO2 films with supercritical CO2 fluid treatment. J Appl Phys 2008; 103:74108.
    169. 梁舒評,“ITO電極對電阻式記憶體切換特性的機制與研究”,國立中山大學,碩士論文,2013年。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE