研究生: |
陳錦泰 Chin-Tai Chen |
---|---|
論文名稱: |
微滴佈放於微結構裡蒸發成型之設計、製作和應用 The Design, Fabrication and Applications of Micro Evaporative Droplets on Structured Surfaces |
指導教授: |
錢景常
Ching-Chang Chieng 曾繁根 Fan-Gang Tseng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 130 |
中文關鍵詞: | 微液滴 、蒸發 、微結構表面 、佈放 |
外文關鍵詞: | micro droplet, evaporation, mcirostructured surface, deposition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在提出一非均性固體表面結構的理論模型,並實驗研究微液滴佈放於其上時蒸發成型現象之動態過程,期能控制其乾燥固化後的二維薄膜平坦化及三維微物件的曲面化。在研究構想的實施方法上,是特別探討在具有微圓洞結構化設計的固體基材上,嘗試利用微機電技術去設計改變微結構表面尺寸與親疏水特性,並發展出一套光學顯微鏡系統與雷射共軛焦的非接觸式即時輪廓量測系統。然後,實驗觀測微液滴佈放其上後的各種外觀輪廓動態變化情形,並計算其固液氣三相點的接觸角度、底部徑長、液滴高度與蒸發速率等重要特徵值。實驗結果顯示,疏水性PDMS微洞結構具有Depinned液滴特性,能夠使稀濃度Microspheres液滴形成最平坦化分佈的二維薄膜(S.D. ~2.9%),並且能夠使高濃度PU液滴自我形成各類曲面輪廓(凸平面、凹平面、或其他)的微型物件。其中的一些運用最小表面能理論的近似數值計算與實驗結果亦相符合。在未來產業應用方面,此些微滴佈放成型的研究成果,可以廣泛地提供諸如利用噴液技術製作圖像的製程基礎,包括液晶顯示器之彩色濾光片、有機發光顯示器、高分子電晶體、生醫DNA檢測晶片、微透鏡陣列等製作。
Evaporation experiments of volatile pure droplets both on the flat surfaces and inside the micro wells are carried out in detail for understanding the fundamental effects of microstructure change, with analysis of the contact-angle characteristics, evaporation rates, micro-well structure dimensions and prototype fabrications, and comparison of the distinct results. Designs of the diluted droplets (water/microspheres) deposition on the micro-well surface are introduced along with the non-contact measurement principles of surface profile using a confocal laser system, experimental apparatus setup, and microfabrications and measurement results. Their evolution modes of droplet evaporation on the micro-well surfaces are studied by varying wettability (SU-8 and PDMS) to improve the profile uniformity. Resulting flat meniscus from diluted droplets that contain microspheres in suspension achieves high uniformity (~2.9%) with suitable wettability. Moreover microstructure self-formation and release from structured surface is presented in corporation of droplet and molding operation based on the surface tension of droplet in nature. Concentrated PU polymer droplets are used for many three-dimensional arbitrary-curvatured microstructures. Approximate method based on surface tension (energy) is described and solved for the curvatured shapes after drying as well. Those achieved results can be applied to various manufactures of the microstructures including LCD color filter, ploy-LED, polymer transistors, NDA bio-chips and microlenses.
[1] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature, Vol.389, pp.827-829,1997.
[2] D.M. Anderson, and S.H. Davis, “The spreading of volatile liquid droplets on heated surfaces,” Physics of Fluids, Vol.7, pp.242-248, 1995.
[3] C. T. Chen and H. W. Su, “Experimental study of microlens fabrication using polyvinyl alcohol solution,” Tamkang Journal of Science and Engineering, Vol. 7, No.2, pp.119-122, 2004.
[4] J. B. Szczech, C. M. Megaridis, D. R. Gamota, and J. Zhang, “Fine-line conductor manufacturing using drop-on-demand PZT printing technology,” IEEE Transactions of Electronics Packaging, Vol. 25, No.1, pp.26-33, 2002.
[5] B. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymer: state of the art and future developments,” Advanced Materials, Vol.16, No.3, pp.203-213, 2004.
[6] R. D. Deegan, Deposition at pinned and depinned contact lines: pattern formation and applications, PhD. Dissertation, University of Chicago, Illinois, USA, 1998.
[7] L. R. van den Doel, and L. J. van Vliet, “Temporal phase-unwrapping algorithm for dynamic interference pattern analysis in interference-contrast microscopy,” Applied Optics, Vol.40, p.4487-4500, 2001.
[8] J. P. Holman, Heat Transfer, SI Metric Edition, pp.582-590, McGraw-Hill Book Company, USA, 1989.
[9] F. G. Tseng, C. J. Kim, and C. M. Ho, “A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops- Part I: Concept, design, and model,” Journal of Microelectromechanical Systems, Vol. 11, No. 5, pp.427-436, 2002.
[10] G. Percin, T. S. Lundgren, and B. T. Khuri-Yakub, “Controlled ink-jet printing and deposition of organic polymers and solid particles,” Applied Physics Letters, Vol.73, No.16, pp.2375-2377, 1998.
[11] M. Bale, J. C. Carter, C. J. Greighto, H. J. Greighton, P. H. Lyon, P. Ng, L. Webb, and A. Webrum, “Ink-jet printing: The route to production of full-color P-OLED displays,” Journal of the SID, Vol.14, pp.453-459, 2006.
[12] T. Sugiura, “Development of pigment-dispersed-type color filters for LCDs,” Journal of the SID, Vol.1, pp.341-346, 1993.
[13] C. T. Chen, “Micro-fabrication of color filter for liquid crystal display by using inkjet-based method,” MEMS/MOEMS Proc. of SPIE, Vol.4928, pp.77-84, 2002.
[14] C. J. Chang, S. J. Chang, F. M. Wu, M. W. Hsu, W. W. Chiu, and K. Chen, “Effect of compositions and surface treatment on the jetting stability and color uniformity of ink-jet printed color filter,” Japanese Journal of Applied Physics, Vol. 43, No.12, pp.8227-8233, 2004.
[15] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, Vol.290, pp.2123-2126, 2000.
[16] T. F. Guo, S. C., Chang, S. Pyo, and Y. Yang, “Vertically integrated electronic circuits via a combination of self-assembled polyelectrolytes, ink-jet printing, and electroless metal plating process,” Langmuir, Vol.18, pp.8142-8147, 2002.
[17] S. B. Fuller, E. J. Wilhelm, and J. M. Jacobson, “Ink-jet printed nanoparticle microelectromechanical systems,” Journal of Microelectromechanical Systems, Vol. 11, No. 1, pp.54-60, 2002.
[18] V. Dugas, J. Broutin, and E. Souteyrand, “Droplet evaporation study applied to DNA chip manufacturing,” Langmuir, Vol.21, pp.9130-9136, 2005.
[19] G. MacBeath, and S. Schreiber, “Printing proteins as microarrays for high-throughput function determination,” Science, Vol.289, pp.1760-1763, 2000.
[20] O. Gutmann, R. Kuehlewein, S. Reinbold, R. Niekrawietz, C. P. Steinert, B. de Heij, R. Zengerle, and M. Daub, “Fast and reliable protein microarray production by a new drop-in-drop technique,” Lab on a Chip, Vol. 5, pp.675-681, 2005.
[21] A. B. El Bediwi, W. J. Kulnis, Y. Luo, D. Woodland, and W. N. Unertl, “Distribution of latex particles deposited from water suspensions,” Materials Research Soceity Symposium Proeedings, Vol. 372, pp.277-282, 1995.
[22] C. N. C. Lam, R. Wu, D. Li, M. L. Hair, and A. W. Neumann, “Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis,” Advances in Colloid and Interface Science, Vol. 96, pp.169-191, 2002.
[23] H. Y. Erbil, G. McHale, and M. I. Newton, “Drop evaporation on solid surface: Constant angle mode,” Langmuir, Vol. 18, pp.2636-2641, 2002.
[24] J. Conway, H. Korns, and M. R. Fisch, “Evaporation kinematics of polyrence bead suspensions,” Langmuir, Vol. 13, pp.426-430, 1997.
[25] A. S. Dimitrov, C. D. Dushkin, H. Yoshimura, and K. Nagayama, “Observations of latex particle two-dimensional-crystal nucleation in wetting films on mercury, glass, and mica,” Langmuir, Vol. 10, pp.432-440, 1994.
[26] E. Adachi, A. S. Dimitrov, and K. Nagayama, “Stripe patterns formed on a glass surface during droplet evaporation,” Langmuir, Vol.11, pp.1057-1060, 1995.
[27] C. Bourges-Monnier and M. E. Shanahan, “Influence of evaporation on contact angle,” Langmuir, Vol.11, pp.2820-2829, 1995.
[28] H. Hu, and R. G. Larson, “Evaporation of a sessile droplet on a substrate,” Journal of Physical Chemistry B, Vol. 106, pp.1334-1344, 2002.
[29] Y. Deng, and X. Y. Zhu, “Transport at the air/water interface is the reason for rings in protein microarrays,” Journal of American Chemical Society, Vol. 128, pp.2768-2769, 2006.
[30] B. Rieger, L. R. van den Doel and L. J. Vliet, “Ring formation in nanoliter cup: quantitative measurements of in micromachined wells,” Physical Review E, Vol.68, 036312, 2003.
[31] Surface Scanning Laser Confocal Displacement Meter LT-9000 Series, http://www.keyence.com.
[32] Y. Akishiba, “Non-contact type profile measuring apparatus,” US Patent 6,700,671, 2004.
[33] K. C. Fan, “A non-contact automatic measurement for free-form surface profiles,” Computer Integrated Manufacturing Systems Vol. 10, No. 4, pp.277-285, 1997.
[34] P. Seitavuopio, J. heinamaki, J. Rantanen, and J. Yliruusi, “Monitoring Tablet Surface Roughness During the Film Coating Process,” AAPS Pharmscitech Journal, Vol.7, No.2, Article 31, 2006 (http://www.aapspharmscitech.org)
[35] C. T. Chen, F. G. Tseng, and C. C. Chieng, “Evaporation evolution of volatile liquid droplets in nanoliter wells,” Sensors and Actuators A, Vol. 130-131, pp.12-19, 2006.
[36] C. T. Chen, F. G. Tseng and C. C. Chieng, “Uniform nanoliter solute deposition by control of droplet profile during evaporation with micro well,” IEEE MEMS’06 Proceedings, pp.190-193, 2006.
[37] G. T. A. Kovacs, “Micromachined transducers sourcebook,” The McGraw-Hill Companies, Inc., Singapore ,1998.
[38] M. J. Madou, “Fundamentals of microfabrication,” CRC Press LLC, Florida, USA ,1997.
[39] S. M. Sze, “Semiconductor sensors,” John Wiley & Sons, Inc., New York, USA ,1994.
[40] Y. Xia, and G. M. Whitesides, “Soft lithography,” Annual Review of Material Science, Vol. 28, pp.153-184, 1998.
[41] N. L. Jeon, I. S. Choi, B. Xu, and G. M. Whitesides, “Large-area patterning by vacuum-assisted micromolding,” Advanced Materials, Vol. 11, No.11, pp.946-950, 1999.
[42] X. M. Zhao, S. P. Smith, S. J. Waldman, and G. M. Whitesides, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Applied Physics Letters, Vol. 71. No.8, pp.1017-1019, 1997.
[43] D. G. Choi, H. K. Yu, and S. M. Yang, “2D nano/micro patterning using soft/block copolymer lithography,” Material Science and Engineering C, Vol. 24, pp.213-216, 2004.
[44] J. L. Wilbur, A. Kumar, H. A. Biebyck, E. Kim, and G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology, Vol. 7, pp.452-257, 1996.
[45] R. B. Stoughton, “Applications of DNA microarrays in biology,” Annual Review of Biochemistry, Vol. 74, pp.53-82, 2005.
[46] B. D. Martin, B. P. Gaber, C. H. Patterson, and D. C. Turner, “Direct protein microarray fabrication using a hydrogel stamper,” Langmuir, Vol. 14, No.15, pp.3971-3975, 1998.
[47] F. G. Tseng, S. C. Lin, H. M. Huang, C. Y. Huang, and C.-C. Chieng, “Protein micro arrays immobilized by micro-stamps and –protein wells on phastGel pad,” Sensors and Actuators B, Vol. 83, pp.22-29, 2002.
[58] C. M. Ho and Y. C. Tai, “Micro-electro-mechanical-systems (MEMS) and fluid flows,”Annual Reviews of Fluid Mechanics, Vol. 30, pp.579-612, 1998.
[49] S. W. Walker, and B. Shapiro, “Modeling the fluid dynamics of electrowetting on dieletric (EWOD),” Journal of Microelectromechanical Systems, Vol. 15, No. 4, pp.986-1000, 2006.
[50] E. Kim and G. M. Whitesides, “Use of minimal free energy and self-assembly to form shapes,” Chemistry of Material, Vol. 7, pp.1257-1264, 1995.
[51] A. Terfort, N. Bowden, and G. M. Whitesides, “Three-dimensional self-assembly millimetre-scale components,” Nature, Vol. 386, pp.162-164, 1997.
[52] P. Lenz, “Wetting phenomena on structured surfaces,” Advanced Materials, Vol. 11, No. 8, pp.1531-1534, 1999.
[53] R. R. A. Syms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, “Surface Tension-Powered Self-Assembly of Microstructures - The State-of-the-Art,” Journal of Microelectromechanical Systems, Vol. 12, No. 4, pp.387-417, 2003.
[54] M. M. Ling and Z. Bao, “Thin film depoistion, patterning, and printing in organict hin film transistors,” Chemistry of Material, Vol. 7, pp.1257-1264, 2004.
[55] E. L. Decker and S. Garoff, “Contact line structure and dynamkics on surfaces with contact angle hysteresis,” Langmuir, Vol. 13, pp.6321-6332, 1997.
[56] F. Parisse and C. Allain, “Drying of colloid suspension droplets: experimental study and profile renormalization,” Langmuir, Vol. 13, pp.3598-3602, 1997.
[57] J. M. Bauer, T. A. Saif, and D. J. Beebe, “Surface tension driven formation of microstructures,” Journal of Microelectromechanical Systems, Vol. 13, No. 4, pp.553-558, 2004.
[58] C. T. Chen, C. C. Chieng, and F. G. Tseng, “Uniform solute deposition of evaporative droplet in nanoliter wells,” Journal of Microelectromechanical Systems, Vol. 16, No. 5, pp.1209-1218, 2007.
[59] P. R. Pujado, C. Huh, and L. E. Scriven, “On the attribution of an equation of capillarity to Young and Laplace,” Journal of Colloid and Interface Science, Vol. 38, No. 3, pp.6610662, 1972.
[60] H. Lorenz, M. Despont, N. Fahrni, J, Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sensors and Actuators A, Vol. 64, pp.33-39, 1998.
[61] C. H. Lin, G. B. Lee, B. W. Chang, and G. L. Chang, “A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist,” Journal of Micromechanics and Microengineering, Vol. 12, pp.590-597, 2002.
[62] S. Subramani, J. M. Lee, I. W. Cheong, J. H. Kim, “Synthesis and characterization of water-Borne crosslinked silated polyurethane dispersions,” Journal of Applied Polymer Science, Vol. 98, pp.620-631, 2005.
[63] S. Metz, A. Bertsch, and P. Renaud, “Partial release and detchment of microfabricated metal and polymer structures by anodic metal dissolution,” Journal of Microelctromechanical Systems, Vol. 14, No. 2, pp. 383-391, 2005.
[64] L. V. Pashinina, “Stability of wave forms of motion of viscous fluid layer under tangential stress,” Fluid Dynamics, Vol. 1, No. 6, pp.116-118, 1966.
[65] E. Kreyszig, “Advanced engineering mathematics,” John Wiley & Sons, Inc., 6th edition, USA, 1988.
[66] S. Moller and S. R. Forrest, “Improved out-coupling in organic light emitting diodes employing ordered microlens arrays,” Journal of Applied Physics, Vol.91, pp.3324-3327, 2002.
[67] H. Yang, C. T. Pan, and M. C. Chou, “Ultra-fine machining tool/molds by LIGA technology,” Journal of Micromechanics and Microengineering, Vol. 11, pp.94-99, 2001.
[68] Y. C. Lee, C. M. Chen, and C. Y. Wu, “Spherical and aspheric microlens fabricated by excimer LIGA-like process,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 129, No.1, pp.126-134, 2007.
[69] C. T. Chen, C. C. Chieng, F. G. Tseng, “Self-formation and release of arbitrary-curvatured structures utilizing droplet deposition and structured surface,” Journal of Micromechanics and Microengineering, in revising, 2007.