簡易檢索 / 詳目顯示

研究生: 張國欽
Kuo-Chin Chang
論文名稱: 銅凸塊設計與金屬界層擴散成長對微電子元件可靠度影響研究
Study of Effects of Cu Stud Design and IMC Growth on the Reliability of Micro-Electronic Devices
指導教授: 江國寧
Kuo-Ning Chiang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
中文關鍵詞: 銅凸塊金屬界層晶圓級構裝推球分析熱循環分析構裝可靠度
外文關鍵詞: Cu Stud, Intermetallic Compounds(IMC), Wafer Level Package(WLP), Shear Analysis, Thermal Cycling Analysis, Package Reliability
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,為因應電子產品市場朝高密度、高功能及輕、薄、短、小之趨勢發展,一種不需填注底膠(Underfill)之晶圓級構裝(Wafer Level Package, WLP)扮演著關鍵性角色。然由於晶圓級構裝不填注底膠,因此當晶圓級構裝於組裝PCB基板後承受熱循環負載時,焊錫接點可靠度已成為構裝結構主要可靠度問題之一。如何提昇焊錫接點可靠度,亦成為晶圓級構裝設計之關鍵所在。另一方面,錫球剪力測試已被電子業界廣泛採用來評估錫球黏附於先進構裝元件之強度。而低剪力強度的錫球經常於構裝可靠度測試中屬較差之焊錫接點,因此近年來已逐漸要求增加錫球剪力強度。
    為解決上述問題,本研究以銅凸塊(Cu Stud)形成於焊錫墊片表面中心位置之設計概念,發展一新型晶圓級構裝結構。同時利用現有半導體製程條件成功的製作出具圓形銅凸塊之焊錫墊片結構,因此所提之新型銅凸塊於製程技術上具可行性。本研究分別建構三維非線性有限單元推球及加速熱循環分析模型,來探討銅凸塊設計對錫球剪力強度及焊錫接點熱疲勞壽命之影響。在推球分析方面,探討銅凸塊之幾何尺寸、形狀和材料性質對錫球剪力強度之影響,並將計算分析所得之剪力與位移曲線圖與實驗結果比較來驗證有限單元推球分析模型之精確性。在加速熱循環分析方面,探討銅凸塊之幾何尺寸、形狀和材料性質與晶片和PCB基板厚度對焊錫接點可靠度之影響,並將分析結果與實驗結果和文獻中之實驗資料比較來驗證有限單元加速熱循環分析模型之精確性。

    由有限單元分析與實驗結果比較可知,本研究之模擬分析具一定之可信度。研究結果指出錫球包含適當尺寸之銅凸塊可有效提昇錫球剪力強度。而建構較大尺寸之銅凸塊至晶圓級構裝及PCB基板之焊錫墊片上,可有效提昇焊錫接點熱疲勞壽命,若再減少晶片厚度可進一步提昇焊錫接點可靠度。

    此外,本研究也探討共晶錫球與具Au/Ni金屬層之焊錫墊片其接觸面經迴焊及定溫烘烤後之金屬界層成長情形,並探討金屬界層成長對錫球剪力強度之影響。實驗之研究參數包括錫球體積、焊錫墊片直徑及金厚度。金屬界層之成長機制屬於擴散控制(Diffusion-Controlled),其擴散機構中主要的擴散方式為空位擴散(Vacancy Diffusion),空位能一個接一個不停地與原子交換位置。本研究之實驗結果指出錫球與焊錫墊片間之Au0.5Ni0.5Sn4金屬界層成長使得接觸界面過於脆弱,造成焊錫接點之剪力強度降低而影響構裝結構可靠度。適當減少金層厚度能降低錫球含金量(Au Weight)及Au0.5Ni0.5Sn4金屬界層厚度,有助於防止錫球剪力強度之衰減。

    本研究之結果可作為多種先進球柵陣列型態電子構裝元件之設計參考,以期有助於提昇電子構裝之可靠度。


    A wafer level package (WLP) without the underfill layer was introduced in recent years to address the demand of the electronic packaging industry for increased density and performance, as well as lightness, thinness, small size and cost-effectiveness. However, the solder joint reliability under thermal cycling conditions becomes a critical problem when mounting the WLP onto a PCB when the underfill layer has been eliminated. Consequently, enhancing the board level reliability is of primary concern in current WLP design. At the same time, the solder ball shear test has been widely adopted in the electronics industry to estimate the strength of solder ball attachment of advanced electronic packages. A solder ball with low shear strength is usually considered a weak solder joint in package reliability testing. Consequently, demands for increasing the solder ball shear strength have risen in recent years.
    In order to solve these problems, this research proposed a new WLP design, based on forming a Cu stud on the center of the surface of the solder pad. The solder pad with a round Cu stud was made using a semiconductor manufacturing process. Therefore, this novel Cu stud design technology is workable. To investigate the impact of a Cu stud on the solder ball shear strength and solder joint reliability, 3-D non-linear finite element models were used for the Cu stud design. In shear analysis, this investigation explored the effects of various parameters including the Cu stud’s dimension, shape, and material properties on the solder ball shear strength. Furthermore, the shear force-displacement curves, obtained by computational analysis, were compared with the experimental results to demonstrate the accuracy of the finite element models. In thermal cycling analysis, this research investigated the effects of various parameters, including the Cu stud’s dimension, shape, material properties and the die and PCB thicknesses on the solder joint’s reliability. To demonstrate the accuracy of the finite element models, the analytical results were compared with the experimental results and the experimental data reported in the literature.

    Comparing the experimental data with the results from the finite element analysis revealed that the finite element analysis was reliable. The analytical results established that a suitable size of Cu stud in a solder ball could effectively enhance the ball’s shear strength. Moreover, the solder joint reliability could be significantly improved by forming large Cu studs on the surfaces of the solder pads of WLP and PCB substrate, and could be further enhanced by combining large Cu studs with thin die.

    In addition, this research also explored the growth of intermetallic compounds (IMC) under aging for eutectic Sn-Pb solder reflowed on a Cu pad with an Au/Ni surface finish. The effects of the intermetallic layer on the solder ball shear strength were examined for various solder ball sizes, Cu pad sizes and Au layer thicknesses. The IMC growth is dominated by the diffusion-controlled mechanism, in which the vacancy diffusion is the main diffusion mode. The vacancies and atoms can interchange locations continuously. Experimental results indicated that the degradation of the solder ball shear strength was found to be mainly caused by brittle interfacial fracture, due to the formation and growth of the Au0.5Ni0.5Sn4 intermetallic layer. Decreasing the Au layer thickness can reduce the Au weight in the solder and the Au0.5Ni0.5Sn4 thickness, and so avoid the degradation of the solder ball shear strength.

    The findings of this research can offer designers and manufacturers an index to adjust the design for advanced ball grid array package to enhance their package reliability.

    中文摘要………………………………………………………… I 英文摘要………………………………………………………… III 目錄……………………………………………………………… V 表目錄…………………………………………………………… VIII 圖目錄…………………………………………………………… X 符號說明………………………………………………………… XX 第一章 簡介……………………………………………………… 1 1.1 研究動機…………………………………………………… 1 1.2 文獻回顧…………………………………………………… 2 1.2.1 IC構裝技術之發展與構裝可靠度問題……………… 2 1.2.2 晶圓級構裝之種類與設計及可靠度探討…………… 5 1.2.3 推球試驗與分析……………………………………… 8 1.2.4 焊錫接點之熱疲勞壽命預估………………………… 10 1.2.5 金屬界層之擴散成長與對構裝結構可靠度之影響研 究……………………………………………………… 12 1.3 研究主題…………………………………………………… 13 第二章 理論分析………………………………………………… 16 2.1 錫球幾何外型預測………………………………………… 16 2.1.1 截球法(Truncated Sphere Theory) ……………… 16 2.1.2 能量法(Energy-Based Energy) …………………… 18 2.2 收斂準則Newton-Raphson法……………………………… 20 2.3 接觸力學理論……………………………………………… 24 2.4 熱傳導分析………………………………………………… 35 2.5 熱應力分析………………………………………………… 38 2.6 破壞準則(Failure Criteria)…………………………… 42 2.7 硬化準則(Hardening Rule)……………………………… 45 2.8 晶圓級構裝之可靠度分析………………………………… 47 2.8.1 焊錫接點熱疲勞壽命預測…………………………… 47 2.8.2 可靠度實驗數據統計分析…………………………… 48 2.9 金屬界層成長與擴散效應分析…………………………… 51 第三章 具銅凸塊之焊錫墊片結構製作………………………… 53 3.1 儀器設備…………………………………………………… 53 3.2 製程步驟…………………………………………………… 53 3.3 錫球置放與迴焊…………………………………………… 55 第四章 新型晶圓級構裝之推球分析…………………………… 57 4.1 有限單元推球分析………………………………………… 57 4.1.1 分析模型建立………………………………………… 57 4.1.2 分析模型之錫球幾何外型驗證……………………… 59 4.1.3 各項材料參數之設定………………………………… 59 4.2 結果與討論………………………………………………… 60 4.2.1 推球分析之錫球剪力與破壞模式探討……………… 60 4.2.2 有限單元推球分析模型準確性之驗證……………… 62 4.2.3 銅凸塊設計參數對錫球剪力強度之影響分析……… 64 4.3 結語………………………………………………………… 67 第五章 新型晶圓級構裝之加速熱循環分析…………………… 68 5.1 有限單元加速熱循環分析………………………………… 68 5.1.1 分析模型建立………………………………………… 68 5.1.2 分析模型之焊錫接點幾何外型驗證………………… 70 5.1.3 各項材料參數之設定………………………………… 71 5.1.4 加速熱循環試驗模擬………………………………… 71 5.2 結果與討論………………………………………………… 72 5.2.1 有限單元加速熱循環分析模型準確性之驗證……… 72 5.2.2 銅凸塊設計參數對焊錫接點熱疲勞壽命之影響分析 75 5.2.2.1 “模型一”之加速熱循環分析………………… 76 5.2.2.2 “模型二”之加速熱循環分析………………… 80 5.2.2.3 “模型三”之加速熱循環分析………………… 82 5.2.3 晶片厚度及基板厚度對焊錫接點可靠度之影響…… 83 5.3 結語………………………………………………………… 84 第六章 金屬界層成長與對錫球剪力強度影響分析…………… 86 6.1 具Au/Ni金屬層之圓形焊錫墊片製作 …………………… 86 6.2 金屬界層成長及推球實驗………………………………… 88 6.3 實驗結果與討論…………………………………………… 89 6.3.1 金屬界層之成長……………………………………… 89 6.3.2 金屬界層成長對錫球剪力強度之影響……………… 91 6.3.3 金厚度對金屬界層成長與錫球剪力強度影響……… 92 6.4 結語………………………………………………………… 95 第七章 結論與建議……………………………………………… 96 參考文獻………………………………………………………… 99 附錄A …………………………………………………………… 114 圖表……………………………………………………………… 117

    1. Lee, Z. M., “Liquid Encapsulant Technology and Its Development,” Industrial Materials, Vol. 151, pp. 117-131, July 1999. (in Chinese)
    2. Lau, J. H., Ball Grid Array Technology, McGraw-Hill, New York, 1995.
    3. Lau, J. H. and Lee, S. W. R., Chip Scale Package (CSP), McGraw-Hill, New York, 1999.
    4. Lau, J. H., Flip Chip Technologies, McGraw-Hill, New York, 1995.
    5. Lau, J. H., Low Cost Flip Chip Technologies, McGraw-Hill, New York, 2000.
    6. Hsu, G. S., ”Advanced Packaging Technology-Wafer Level Package,” Industrial Materials, Vol. 151, pp. 86-91, July 1999. (in Chinese)
    7. Kimura, H., Yoshida, T., Ohizumi, S., Nishioka, T., Nakao, M. and Harada, M., “New Analytical Study for Popcorn Phenomenon,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 6, pp. 1117-1122, December 1992.
    8. Ahn, S. H. and Kwon, Y. S., “Popcorn Phenomena in a Ball Grid Array Package,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 18, No. 3, pp. 491-495, June 1995.
    9. Hawkins, G., Ganesan, G., Lewis, G. and Berg, H., “The PBGA: A Systematic Study of Moisture Resistance,” The International of Microcircuits and Electronic Packaging, Vol. 18, No. 2, pp. 122-132, Second Quarter 1995.
    10. Poboret, B., Ilyas, Q. S. M., Potter, M. and Argyle, J., “Reliability and Moisture Sensitivity Evaluation of 225-pin, 2 Layered Overmolded(OMPAC) Ball Grid Array Package,” Proceedings of 45th IEEE Electronic Components and Technology Conference, pp. 434-439, May 21-24, 1995, Las Vegas, Nevada, USA.
    11. Tan, G. L., Hoo, C. Y., Chew, G., Low, J. H., Tay, N. B., Chakravorty, K. K. and Lim, T. B., “Reliability Assessment of BGA Packages,” Proceedings of 46th IEEE Electronic Components and Technology Conference, pp. 687-693, October 19-21, 1996, Orlando, Florida, USA.
    12. Galloway, J. E. and Miles, B. M., “Moisture Absorption and Desorption Predictions for Plastic Ball Grid Array Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 20, No. 3, pp. 274-279, September 1997.
    13. Lau, J., Chen, R. and Chang, C., “Real-Time Popcorn Analysis of Plastic Ball Grid Array Packages During Solder Reflow,” Proceedings of IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 455-463, October 19-21, 1998, Austin, Texas, USA.
    14. Teo, Y. C., Wong, E. H. and Lim, T. B., “Enhancing Moisture Resistance of PBGA,” Proceedings of 48th IEEE Electronic Components and Technology Conference, May 25-28, Seattle, Washington, USA, pp. 930-935, 1998.
    15. Pecht, M. G., “Moisture Sensitivity Characterization of Build-Up Ball Grid Array Substrates,” IEEE Transactions on Advanced Packaging, Vol. 22, No. 3, pp. 515-523, August 1999.
    16. Yeh, M. K. and Chang, K. C., “Failure Prediction of Plastic Ball Grid Array Electronic Packaging,” Proceedings of the Pacific Rim/ASME International Intersociety Electronic and Photonic Packaging Conference (InterPACK'99), EEP-Vol. 26-1, pp. 469-476, June 13-18, 1999, Maui, Hawaii, USA.
    17. Yeh, M. K. and Chang, K. C., “Stress Intensity Factor Analysis at Delamination Tip of Plastic Ball Grid Array Package,” Proceedings of the 16th National Conference on Mechanical Engineering, Vol. 5: Advanced Engineering Technology, pp. 283-290, December 3-4, 1999, Hsinchu, Taiwan, ROC. (in Chinese)
    18. Lau, J. H., Chang, C. and Lee, S. W. R., “Failure Analysis of Solder Bumped Flip Chip on Low-Cost Substrates,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, No. 1, pp. 19-28, January 2000.
    19. Wang, J. J., Ren, W., Zou, D. Q. and Liu, S., “Effect of Cleaning and Non-Cleaning Situations on the Reliability of Flip Chip Packages,” IEEE Transactions on Components and Packaging Technologies, Vol. 22, No. 2, pp. 221-228, 1999.
    20. Todd, M., “Effects of Non-Clean Flux Residue on the Performance of Flip-Chip Devices,” Proceeding of International Symposium on Advanced Packaging Material, pp. 180-182, 2000.
    21. Ohshima, Y., Nakazawa, T., Doi, K., Aoki, H. and Hiruta, Y., “Flip Chip Underfill Reliability of CSP During IR Reflow Soldering,” Proceedings of 35th IEEE International Reliability Physics Symposium, pp. 124-128, April 8-10, 1997, Denver, Colorado, USA.
    22. Garrou, P., “Wafer Level Chip Scale Packaging (WL-CSP): An Overview,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 2, pp. 198-205, May 2000.
    23. Elenius, P., Barrett, S. and Goodman, T., “Ultra CSPTM-A Wafer Level Package,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 2, pp. 220-226, May 2000.
    24. Topper, M., Fehlberg, S., Scherpinski, K., Karduck, C., Glaw, V., Heinricht, K., Coskina, P., Ehrmann, O. and Reichl, H., “Wafer-Level Chip Size Package (WL-CSP),” IEEE Transactions on Advanced Packaging, Vol. 23, No. 2, pp. 233-238, May 2000.
    25. Reichl, H., Schubert, A. and Topper, A., “Reliability of Flip Chip and Chip Size Packages,” Microelectronics Reliability, Vol. 40, pp. 1243-1254, 2000.
    26. Rzepka, S., Hofer, E., Simon, J., Meusel, E. and Reichl, H., “Stress Analysis and Design Optimization of a Wafer-Level CSP by FEM Simulations and Experiments,” Proceedings of 51st IEEE Electronic Components and Technology Conference, pp. 704-714, May 29-June 1, 2001, Orlando, Florida, USA.
    27. Yang, H., Elenius, P. and Barrett, S., “Ultra CSPTM Bump on Ploymer Structure,” Proceedings of International Symposium on Advanced Packaging Materials, pp. 211-215, March 3-8, 2000, Braselton, Georgia, USA.
    28. Kawahara, T., “SuperCSPTM,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 2, pp. 215-219, May 2000.
    29. Keser, B., Yeung, B., White, J. and Fang, T., “Encapsulated Double-Bump WL-CSP: Design and Reliability,” Proceedings of 51st IEEE Electronic Components and Technology Conference, pp. 35-39, May 29-June 1, 2001, Orlando, Florida, USA.
    30. Lin, J. C. and Chiang, K. N., “Design and Analysis of Wafer-Level CSP with Double-Pad Structure,” CD-ROM of International Symposium on Experimental Mechanics, No. G195, December 28-30, 2002, Taipei, Taiwan, ROC.
    31. Liu, C. M. and Chiang, K. N., “Solder Bumps Layout Design and Reliability Enhancement of Wafer Level Packaging,” CD-ROM of International Symposium on Experimental Mechanics, No. G158, December 28-30, 2002, Taipei, Taiwan, ROC.
    32. Novitsky, J. and Pedersen, D., “FormFactor Introduces an Integrated Process for Wafer-Level Packaging, Burn-In Test, and Module Level Assembly,” Proceedings of International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, pp. 226-231, March 14-17, 1999, Braselton, Georgia, USA.
    33. Kang, I. S., Kim, J. H., Park, I. S., Hur, K. R., Cho, S. J., Han, H. and Yu, J., “The Solder Joint and Runner Metal Reliability of Wafer-Level CSP (Omega-CSP),” Proceedings of 50th IEEE Electronic Components and Technology Conference, pp. 87-92, May 21-24, 2000, Las Vegas, Nevada, USA.
    34. Kazama, A., Satoh, T., Yamaguchi, Y., Anjoh, I. and Nishimura, A., “Development of Low-Cost and Highly Reliable Wafer Process Package,” Proceedings of 51st IEEE Electronic Components and Technology Conference, pp. 40-46, May 29-June 1, 2001, Orlando, Florida, USA.
    35. Lau, J. H. and Lee, S. W. R., “Effects of Build-Up Printed Circuit Board Thickness on the Solder Joint Reliability of a Wafer Level Chip Scale Package (WLCSP),” IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 1, pp. 3-14, 2002.
    36. Erich, R., Coyle, R. J., Wenger, G. M. and Primavera, A., “Shear Testing and Failure Mode Analysis for Evaluation of BGA Ball Attachment,” Proceedings of IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 16-22, October 18-19, 1999, Austin, Texas, USA.
    37. Coyle, R. J. and Solan, P. P., “The Influence of Test Parameters and Package Design Features on Ball Shear Test Requirements,” Proceedings of IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 168-177, October 2-3, 2000, Santa Clara, California, USA.
    38. Lee, S. W. R., Yan, C. C., Karim, Z. and Huang, X., “ Assessment on the Effects of Electroless Nickel Plating on the Reliability of Solder Ball Attachment to the Bond Pads of PBGA Substrate,” Proceedings of 50th IEEE Electronic Components and Technology Conference, pp. 868-873, May 21-24, 2000, Las Vegas, Nevada, USA.
    39. JESD22-B117, “BGA Ball Shear,” JEDEC Standard, Solid State Technology Association, Arlington, pp. 1-11, 2000.
    40. Huang, X., Lee, S. W. R., Yan, C. C. and Hui, S., “Characterization and Analysis on the Solder Ball Shear Testing Conditions,” Proceedings of 51st IEEE Electronic Components and Technology Conference, pp. 1065-1071, May 29-June 1, 2001, Orlando, Florida, USA.
    41. Chaudhary, A. B. and Bathe, K. J., “A Solution Method for Static and Dynamic Analysis of Three-Dimensional Contact Problems with Friction,” Computers & Structures, Vol. 24, No. 6, pp. 855-873, 1986.
    42. Rothert, H., Idelberger, H., Jacobi, W. and Niemann, L., “On Geometrically Nonlinear Contact Problems with Friction,” Computer Methods in Applied Mechanics and Engineering, Vol. 51, pp. 139-155, 1985.
    43. Kanto, Y. and Yagawa, G., “A Dynamic Contact Buckling Analysis by Penalty Finite Element,” International Journal for Numerical Method in Engineering, Vol. 29, pp. 755-774, 1990.
    44. Oden, J. T. and Kikuchi, N., “Finite Element Methods for Constrained Problems in Elasticity,” International Journal for Numerical Method in Engineering, Vol. 18, pp. 701-725, 1982.
    45. Yagawa, G. and Hirayama, H., “A Finite Element Method for Contact Problems Related to Fracture Mechanics,” International Journal for Numerical Method in Engineering, Vol. 20, pp. 2175-2195, 1984.
    46. Glowinski, R., Vidrascu, M. and Letallec, P., “Augmented Lagrangian Techniques for Solving Frictionless Contact Problems in Finite Elasticity,” Proceedings of the Europe-US Symposium on Finite Element Methods for Nonlinear Problems, pp. 745-58, 1985.
    47. Simo, J. C. and Taylor, R. L., “Quasi-Incompressible Finite Elasticity in Principal Stretches. Continuum Basis and Numerical Algorithms,” Computer Methods in Applied Mechanics & Engineering, Vol. 85, pp. 273-310, 1991.
    48. Simo, J. C. and Laursen, T. A., “An Augmented Lagrangian Treatment of Contact Problems Involving Friction,” Computer & Structures, Vol. 42, pp. 97-116, 1992.
    49. Ham, S. J. and Lee, S. B., “Measurement of Thermo-Mechanical Deformations of Wafer-Level CSP Assembly under Thermal Cycling Condition,” Proceedings of International Symposium on Electronic Materials and Packaging, pp. 323-327, November 19-22, 2001, Jeju Island, South Korea.
    50. Charles, H. K. and Clatterbaugh G. V., “Solder Joint Reliability-Design Implications from Finite Element Modeling and Experimental Testing,” ASME Journal of Electronic Packaging, Vol. 112, No. 2, pp. 135-146, 1990.
    51. Lin, J. C. and Chiang, K. N., “Thermal/Mechanical Analysis of Novel Ceramic-TSOP Using Non-Linear Finite Element Method, ” Journal of the Chinese Institute of Engineers, Vol. 24, No. 4, pp.453-462, 2001.
    52. Chiang, K. N. and Chen, W. L., “Electronic Packaging Reflow Shape Prediction for the Solder Mask Defined Ball Grid Array,” ASME Journal of Electronic Packaging, Vol. 120, No. 2, pp. 175-178, 1998.
    53. Li, L. and Yeung, B. H., “Wafer Level and Flip Chip Design Through Solder Prediction Model and Validation,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, pp. 650-654, 2001.
    54. Yeung, B. H. and Lee, T. Y. T., “Evaluation and Optimization of Package Processing, Design, and Reliability through Solder Joint Profile Prediction,” Proceedings of 51st IEEE Electronic Components and Technology Conference, pp. 925-930, May 29-June 1, 2001, Orlando, Florida, USA.
    55. Goldmann, L. S., “Geometric Optimization of Controlled Collage Interconnections,” IBM Journal of Reserve Development, Vol. 13, pp. 251-265, 1969.
    56. Heinrich, S. M., Liedtke, P. E., Nigro, N. J., Elkouh, A. F. and Lee, P. S., “Effect of Chip and Pad Geometry on Solder Joint Formation in SMT,” ASME Journal of Electronic Packaging, Vol. 115, pp. 433-439, 1993.
    57. Heinrich, S. M., Schaefer, M., Schroeder, S. A. and Lee, P. S., “Prediction of Solder Joint Geometries in Array-Type Interconnects,” ASME Journal of Electronic Packaging, Vol. 118, pp. 114-121, 1996.
    58. Brakke, K. A., “The Surface Evolver and the Stability of Liquid Surface,” Phil. Trans. R. Soc. Lond. A, Vol. 354, pp. 2143-2157, 1996.
    59. Brakke, K. A., Surface Evolver Manual, version 2.14, The Geometry Center, 1300 S. Second St., Minneapolis, MN 55454, 1999.
    60. Chiang, K. N. and Yuan, C. A., “An Overview of Solder Bump Shape Prediction Algorithms with Validations,” IEEE Transactions on Advanced Packaging, Vol. 24, No. 2, pp. 158-162, 2001.
    61. Chiang, K. N. and Liu, C. M., “A Comparison of Thermal Stress/Strain Behavior of Elliptical/Round Pads,” ASME Journal of Electronic Packaging, Vol. 123, No. 2, pp. 127-131, 2001.
    62. Chen, W. H., Chiang, K. N. and Lin, S. R., “Prediction of Liquid Formation for Solder and Non-Solder Mask Defined Array Packages,” ASME Journal of Electronic Packaging, Vol. 124, No. 1, pp. 37-44, 2002.
    63. Lau et al., “Experimental and Analytical Studies of 28-pin Thin Small Outline Package (TSOP) Solder-Joint Reliability,” ASME, Journal of Electronic Packaging, Vol. 114, pp. 169-176, 1992.
    64. Coffin, L. F. Jr., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” ASME Transactions, Vol. 76, pp. 931-950, 1954.
    65. Manson, S. S., Thermal Stress and Low Cycle Fatigue, New York, McGraw-Hill, pp. 125-192, 1966.
    66. Solomon, H. D., “Fatigue of 60/40 Solder,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. CHMT-9, pp. 91-104, 1986.
    67. Cheng, H. C., Chiang, K. N., Chen, C. K. and Lin, J. C., “A Study of Factors Affecting Solder Joint Fatigue Life of Thermally Enhanced Ball Grid Array Assemblies,” Journal of the Chinese Institute of Engineers, Vol. 24, No. 4, pp. 439-451, 2000.
    68. Sakurai, M., Shibuya, H. and Utsunomya J., “FEM Analysis of Flip-Chip Type BGA,” Proceedings of IEMT-Europe, IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 131-136, April 27-29, 1998, Berlin, Germany.
    69. Alex, C. K. S., Chan, Y. C. and Lai, J. K. L, "Aging Studies of Cu-Sn Intermetallic Compounds in Annealed Surface Mount Solder Joints,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 20, No. 2, pp. 161-166, 1997.
    70. Fan, S. H., Chan, Y. C., Tang, C. W. and Lai, J. K. L., “Aging Studies of PBGA Solder Joints Reflowed at Different Conveyor Speeds,” IEEE Transactions on Advanced Packaging, Vol. 24, No. 4, pp. 486-492, 2001.
    71. Kramer, P. A., Glazer, J. and Morris Jr, J. W., “The Effect of Low Au Concentration on the Creep of Eutectic Sn-Pb Joints,” Metallurgical. Transactions, Vol. 25A, pp. 1249-1255, 1994.
    72. Maeda, A., Umemura, T., Wu, Q., Tomita, Y. and Abe, T., “Formation of Ni3Sn4 at the Boundary between Sn-Pb Soldering Layers and Au/Ni Plated Coatings,” Proceedings of International Symposium on Advanced Packaging Materials, pp. 135-140, March 3-8, 2000, Braselton, Georgia, USA.
    73. Ho, C. E., Zheng, R., Luo, G. L., Lin, A. H. and Kao, C. R., ”Formation and Resettlement of (AuxNi1-x)Sn4 in Solder Joints of Ball-Grid-Array Packages with the Au/Ni Surface Finish,” Journal of Electronic Materials, Vol. 29, No. 10, pp. 1175-1181, 2000.
    74. Minor, A. M. and Morris, J. W., “Inhibiting Growth of the Au0.5Ni0.5Sn4 Intermetallic Layer in Pb-Sn Solder Joints Reflowed on Au/Ni Metallization,” Journal of Electronic Materials, Vol. 29, No. 10, pp. 1170-1174, 2000.
    75. Lee, J. H., Park, J. H., Shin, D. H., Lee, Y. H. and Kim, Y. S., “Kinetics of Au-containing Ternary Intermetallic Redeposition at Solder/UBM Interface,” Journal of Electronic Materials, Vol. 30, No. 9, pp. 1138-1144, 2001.
    76. Zhong, C. H., Yi, S., Mui, Y. C., Howe, C. P., Olsen, D. and Chen, W. T., “Missing Solder Ball Failure Mechanisms in Plastic Ball Grid Array Packages,” Proceedings of 50th IEEE Electronic Components and Technology Conference, pp. 151-159, May 21-24, 2000, Las Vegas, Nevada, USA.
    77. Pfeifer, M. J., “Solder Bump Size and Shape Modeling and Experimental Validation,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 20, No. 4, pp. 452-457, November 1997.
    78. Li, L. and Yeung, B. H., “Wafer Level and Flip Chip Design through Solder Prediction Models and Validation,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, pp. 650-654, December 2001.
    79. Faires, J. D. and Burden, R. L., Numerical Methods, PWS Publishing Company, Boston, 1993.
    80. Zhong, Z. H., Finite Element Procedures for Contact-Impact Problems, Oxford University Press, New York, 1993.
    81. Chang, R. C. and Jhan, S. Y., Nonlinear Finite Element Analysis, Chongqing University Press, Chongqing, 1990. (in Chinese)
    82. Belytschko, T., Liu, W. K. and Moran, B., Nonlinear Finite Elements for Continua and Structures, 1st ed, John Wiley & Sons, New York, 2000.
    83. Bertsekas, D. P., Constrained Optimization and Langrange Multiplier Methods, Academic Press, New York, 1982.
    84. Fortin, M. and Glowinski, R., Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problems, Studies in Mathematics and Its Application, North Holland, Amsterdam, 1983.
    85. Glowinski, R. and Tallec, P. Le, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, Philadelphia, 1989.
    86. Bejan, A., Heat Transfer, Wiley, New York, 1993.
    87. Cook, R. D., Malkus, D. S. and Plesha, M. E., Concepts and Applications of Finite Element Analysis, Wiley, New York, 1989.
    88. Beer, F. P. and Johnston, E. R., Mechanics of Materials, McGraw-Hill, New York, 2002.
    89. Chen, W. F. and Han, D. J., Plasticity for Structural Engineers, Gau Lih, Taipei, 1995.
    90. Gektin, V., Bar-Cohen, A. and Ames, J., “Coffin-Manson Fatigue Model of Underfilled Flip-Chips,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 20, No. 3, pp. 317-326, September 1997.
    91. Qian, Z. and Liu, S., “On the Life Prediction and Accelerated Testing of Solder Joint,” Thermo-Mechanical Characterization of Evolving Packaging Materials and Structures, ASME, EEP-Vol. 24, pp. 1-12, 1998.
    92. Solomon, H. D. and Tolksdorf, E. D., “Energy Approach to the Fatigue of 60/40 Solder: Part I - Influence of Temperature and Cycle Frequency,” ASME Journal of Electronic Packaging, Vol. 117, pp. 130-135, 1995.
    93. Qian, Z., Lu, M., Ren, W. and Liu, S., ”Fatigue Life Prediction of Flip-Chips in Terms of Nonlinear Behaviors of Solder and Underfill,” Proceedings of 49th IEEE Electronic Components and Technology Conference, pp. 141-148, June 1-4, 1999, San Diego, California, USA.
    94. Anderson, T., Guven, I., Madenci, E. and Gustafsson, G., ”The Necessity of Reexamining Previous Life Prediction Analyses of Solder Joints in Electronic Packages,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 3, pp. 516-520, September 2000.
    95. Hong, B. Z., Tuan, T. D. and Burrell, L., “Anisothermal Fatigue Analysis of Solder Joints in a Convective CBGA Package Under Power Cycling,” Sensing, Modeling and Simulation in Emerging Electronic Packaging, ASME, EEP-Vol. 17, pp. 39-46, 1996.
    96. Lau, J. H., Solder Joint Reliability: Theory and Applications, Van Nostrand Reinhold, New York, 1991.
    97. Lau, J. H. and Pao, Y. H., Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York, 1997.
    98. Weibull, W., “A Statistical Distribution Function of Wide Applicability,” ASME Transactions, Journal of Applied Mechanics, Vol. 18, pp.293-297, 1951.
    99. Weibull, W., Fatigue Testing and Analysis of Results, MacMillan, New York, 1961.
    100. Barford, N. C., Experimental Measurements: Precision, Error and Truth, John Wiley & Sons, New York, 1985.
    101. Chen, H. J., Modern Physical Metallurgy, Hsiao-Yuan Press, Taipei, 1986. (in Chinese)
    102. Lee, Y. G. and Duh, J. G. “Interfacial Morphology and Concentration Profile in the Unleaded Solder/Cu Joint Assembly,” Journal of Materials Science: Materials in Electronics, pp. 33-43, 1999.
    103. Vianco, P. T., Kilgo, A. C. and Grant, R., “Intermetallic Compounds Layer Growth by Solid State Reactions between 52Bi-42Sn Solder and Copper,” ibid. 24, pp. 1493, 1985.
    104. Chan, Y. C., Tu, P. L., So, A. C. K. and Lai, J. K. L., “ Effect of Intermetallic Compounds on the Shear Fatigue of Cu/63Sn-37Pb Solder Joints,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 20, No. 4, pp. 463-469, November 1997.
    105. Tu, P. L., Chan, Y. C. and Lai, J. K. L., “Effect of Intermetallic Compounds on the Thermal Fatigue of Surface Mount Solder Joints,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 20, No. 1, pp. 87-93, February 1997.
    106. Judith, G., “Microstructure and Mechanical Properties of Pb-Free Solder Alloy for Low Cost Electronic Assembly: A Review,” Journal of Electronic Materials, Vol. 23, No. 8, pp. 693-700, 1994.
    107. Hong, B. Z. and Su, L. S., “On Thermal Stresses and Reliability of a PBGA Chip Scale Package,” Proceedings of 48th IEEE Electronic Components and Technology Conference, pp. 503-510, May 25-28, 1998, Seattle, Washington, USA.
    108. Michael, G. P., Rakesh, A., Patrick, M., Terrance, D., Sirus, J. and Rahul, M., Electronic Packaging Materials and Their Properties, CRC Press LLC, New York, 1999.
    109. Riemer, D. E. “Prediction of Temperature Cycling Life for SMT Solder Joints on TCE-Mismatched Substrates,” Proceedings of 40th IEEE Electronic Components and Technology Conference, pp. 418-425, May 20-23, 1990, Las Vegas, Nevada, USA.
    110. Chiang, K. N., Memrep Material Database, Department of Power Mechanical Engineering of National Tsing Hua University, CSML Lab., Ver. 2.0 Beta, 1998.
    111. Subbarayan, G., Ferrill, M. G. and DeFoster, S. M., “Reliability of Metallized Ceramic Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 19, No. 3, pp. 685-691, 1996.
    112. JESD22-A104-B, “Temperature Cycling,” JEDEC Standard, Solid State Technology Association, Arlington, pp. 1-9, July 2000.
    113. Chen, S. T. et al., “Out-of Plane Thermal Expansion Coefficient of Biphenyldianhydride-Phenylenediamine Polyimide Film,” Journal of Electreonic Material, Vol. 22, No. 7, pp. 797, 1993.
    114. Pecht, M. and Wu, X., “Characterization of Polyimides Used in High Density Interconnects,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 17, No. 4, pp. 632-639, November 1994.
    115. Pecht, M., Wu, X., Paik, K. W. and Bhandarkar, S. N., “To Cut or Not to Cut: A Thermomechanical Stress Analysis of Polyimide Thin-Film on Ceramic Structures,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 18, No. 1, pp. 150-153, February 1995.
    116. Jog, M. A., “Effect of Elastic-Plastic Behavior of Epoxy on Thermal Stress in TAB Packaging,” The International Society for Hybrid Microelectronics, Vol. 19, No. 3, pp. 308, 1996.
    117. Bader, W. G., “Dissolution of Au, Ag, Pd, Pt, Cu and Ni in a Molten Sn-Lead Solder,” Welding Journal: Res. Suppl., Vol. 48, No. 12, pp. 551-557, 1969.
    118. Ferguson, M. E., Fieselman, C. D. and Elkins, M. A., “Manufacturing Concerns when Soldering with Au Plated Component Leads or Circuit Board Pads,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part C, Vol. 20, pp. 188-193, July 1997.
    119. Zribi, A., Chromik, R. R., Presthus, R., Teed, K., Zavalij, L., DeVita, J., Tova, J., Cotts, E. J., Clum, J. A., Erich, R., Primavera, A., Westby, G., Coyle, R. J. and Wenger, G. M., “Solder Metallization Interdiffusion in Microelectronic Interconnects,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 2, pp. 383-387, June 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE