簡易檢索 / 詳目顯示

研究生: 林伯霖
Lin, Bo-Lin
論文名稱: 古生菌硫磺礦硫化葉菌蛋白質Sso7c4與去氧核糖核酸作用機制之研究
The arginine pairs and C-termini of the Sso7c4 from Sulfolobus solfataricus participate in binding and bending DNA
指導教授: 王惠鈞
Wang, Andrew H.-J.
蘇士哲
Sue, Shih-Che
口試委員: 蔡惠旭
Tsai, Hui-Hsu Gavin
孫玉珠
Sun, Yuh-Ju
陳青諭
Chen, Chin-Yu
詹迺立
Chan, Nei-Li
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 83
中文關鍵詞: 去氧核醣核酸結合蛋白大分子結晶學電子顯微術瑩光共振能量轉移瑩光極化光譜去氧核醣核酸組裝
外文關鍵詞: DNA binding protein, X-ray crystallography, electron microscopy, FRET, fluorescence polarization, DNA packing
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 古生菌硫磺礦硫化葉菌中的蛋白質Sso7c4 在溶液中以雙聚體的形式存在,一
    般相信其為染色體蛋白質,功能是參與去氧核醣核酸組裝或基因轉錄調控。我們
    利用X 光單晶繞射技術解析出Sso7c4 蛋白質的晶體結構,解析度為1.63 埃。而
    在這個蛋白質晶體的繞射數據中,蛋白質的C 端完全沒有電子密度,顯示C 端是
    相當動態的。利用螢光極化光譜量測Sso7c4 突變蛋白質(R11A,R22A,R11A/R22A)
    與DNA 的結合常數並與野生型的Sso7c4 比較。實驗結果顯示Sso7c4 突變蛋白質
    (R11A,R22A,R11A/R22A)與DNA 分子的結合力皆小於野生型,而其中蛋白質
    R11A/R22A 幾乎不與DNA 作用。這證明了位於Sso7c4 上方表面的R11 與R22 兩
    個帶正電的胺基酸,有參與DNA 的結合。由電子顯微影像的分析,證實野生型
    Sso7c4 主要是以架橋與彎曲兩種方式與DNA 作用。相反地C 端最末六個胺基酸
    被刪除的Sso7c4 蛋白質,在高濃度下,會將環狀的DNA 分子撐開,且沒有任何
    讓DNA 更緊密結實的現象。而綜合螢光極化光譜、電子顯微影像以及螢光共振能
    量轉移技術的數據,我們證明了Sso7c4 蛋白質動態且帶正電的C 端,不僅參與
    DNA 分子結合,也會使DNA 分子彎曲。
    在前人的研究中,依照胺基酸序列的比對,將Sso7c4 歸類於類轉錄抑制蛋白
    質。綜合以上所有數據資料,我們利用代謝產物活化蛋白與DNA 複合體中,彎曲
    的DNA 分子結構來建構Sso7c4 與DNA 複合體的模型。更進一步利用螢光共振能
    量轉移實驗量測出與Sso7c4 結合的DNA 分子兩端的距離與模型中的距離吻合,
    驗證了Sso7c4-DNA 模型的準確度。螢光共振能量轉移數據同時也驗證了電顯影
    像分析的結果,野生型Sso7c4 會使得DNA 分子長度縮短(表示DNA 分子被蛋白質
    彎曲),但是C 端刪除的蛋白質無法使DNA 分子長度改變。綜合以上結果,我們
    證明Sso7c4 蛋白質建構或組裝染色體DNA 或是參與基因轉錄的調控,主要是藉
    由架橋與彎曲兩種方式來與DNA 分子作用。


    The Sso7c4 from Sulfolobus solfataricus forms a dimer, which is believed to
    function as a chromosomal protein involved in genomic DNA compaction and gene
    regulation. Here, we present the crystal structure of wild-type Sso7c4 at a high
    resolution of 1.63 Å, showing that the two basic C-termini are disordered. Based on the
    fluorescence polarization (FP) binding assay, two arginine pairs, R11/R22¢ and
    R11¢/R22, on the top surface participate in binding DNA. As shown in electron
    microscopy (EM) images, wild-type Sso7c4 compacts DNA through bridging and
    bending interactions, whereas the binding of C-terminally truncated proteins rigidifies
    and opens DNA molecules, and no compaction of the DNA occurs. Moreover, the FP,
    EM and fluorescence resonance energy transfer (FRET) data indicated that the two
    basic and flexible C-terminal arms of the Sso7c4 dimer play a crucial role in binding
    and bending DNA. Sso7c4 has been classified as a repressor-like protein because of its
    similarity to Escherichia coli Ecrep 6.8 and Ecrep 7.3 as well as Agrobacterium
    tumefaciens ACCR in amino acid sequence. Based on these data, we proposed a model
    of the Sso7c4-DNA complex using a curved DNA molecule in the catabolite activator
    protein-DNA complex. The DNA end-to-end distance measured with FRET upon wildtype
    Sso7c4 binding is almost equal to the distance measured in the model, which
    supports the fidelity of the proposed model. The FRET data also confirm the EM
    observation showing that the binding of wild-type Sso7c4 reduces the DNA length
    while the C-terminal truncation does not. A functional role for Sso7c4 in the
    organization of chromosomal DNA and/or the regulation of gene expression through
    bridging and bending interactions is suggested.

    Table of Contents Chapter 1 Introduction .............................................................................................................. 6 Architectural proteins across three kingdoms of life ............................................................. 6 Architectural proteins from Sulfolobus species ................................................................... 10 Architectural protein Sso7c4 ............................................................................................... 11 3D complex structures among three domains of life ........................................................... 12 AFM images of Sso10-DNA complexes ............................................................................... 14 Specific aim ......................................................................................................................... 15 Chapter 2 Materials & Methods .............................................................................................. 16 Gene cloning and protein overexpression and purification ................................................ 16 Crystallization and X-ray diffraction data collection.......................................................... 19 Structure determination and refinement .............................................................................. 20 Oligonucleotides used in the FP assays .............................................................................. 23 Tryptophan fluorescence quenching assay .......................................................................... 23 Fluorescence polarization ................................................................................................... 24 Electron microscopy ............................................................................................................ 25 Molecular docking model of the Sso7c4-DNA complex ...................................................... 26 Oligonucleotides used in the bulk FRET study ................................................................... 27 Bulk FRET measurement ..................................................................................................... 28 FRET efficiency calculations ............................................................................................... 29 Chapter 3 Results & Discussion ........................................................................................... 31 Overall structures of wild-type and C-terminally truncated Sso7c4 ................................... 31 Sulfates mediate protein-protein interactions in the wild-type crystal ................................ 38 Arginine pairs on the top surface of Sso7c4 are involved in binding DNA ......................... 39 The flexible C-termini of Sso7c4 are crucial for interactions with DNA ............................ 45 Sso7c4 mediated DNA compaction, as visualized by EM ................................................... 50 Proposed Sso7c4-DNA model and validation using FRET ................................................. 59 Biological implications ........................................................................................................ 67 4 Chapter 4 Conclusion .............................................................................................................. 74 References ............................................................................................................................... 76 5 List of figures FIG. 1 THE MODELS OF DNA BINDING MODES. ....................................................................................... 9 FIG. 2 AMINO ACID SEQUENCES OF WILD-TYPE AND C-TERMINALLY TRUNCATED SSO7C4. ................ 12 FIG. 3 REPRESENTATIVE CRYSTAL STRUCTURES OF DNA-BENDING PROTEINS IN COMPLEX WITH DNA AMONG THE THREE KINGDOMS OF LIFE. ............................................................................ 13 FIG. 4 AFM IMAGING OF SSO10-DNA COMPLEX.................................................................................. 14 FIG. 5 COOMASSIE BLUE STAINED SDS-PAGE (15 %) ANALYSIS OF PURIFIED SSO7C4 PROTEINS. .... 18 FIG. 6 CRYSTAL STRUCTURE OF THE WILD-TYPE SSO7C4 PROTEIN. .................................................... 33 FIG. 7 CRYSTAL STRUCTURE OF C-TERMINALLY TRUNCATED SSO7C4. ............................................... 34 FIG. 8 INTERMOLECULAR INTERACTIONS OF THE SSO7C4 MONOMERS AT THE DIMERIZATION INTERFACE. .................................................................................................................................. 35 FIG. 9 PROTEIN-PROTEIN INTERACTIONS IN THE WILD-TYPE SSO7C4 CRYSTAL. ................................ 37 FIG. 10 SULFATE BOUND TO THE TOP SURFACE OF SSO7C4. .................................................................. 37 FIG. 11 SSO7C4-DNA BINDING ASSAY USING FP. .................................................................................. 43 FIG. 12 THE FLUORESCENCE SPECTRA OF SSO7C4 AND ITS DNA-BINDING CURVE.............................. 49 FIG. 13 ELECTRON MICROGRAPHS OF THE PHIX174 PLASMID WITH OR WITHOUT THE WILD-TYPE/CTERMINALLY TRUNCATED SSO7C4 PROTEINS. ............................................................................ 54 FIG. 14 RAW EM IMAGES OF NICKED CIRCULAR PHIX174 PLASMID WITH AND WITHOUT THE SSO7C4. ..................................................................................................................................................... 55 FIG. 15 MODEL OF THE INTERACTION OF SSO7C4 WITH DNA. ............................................................ 61 FIG. 16 IMAGES OF A 384-WELL MICROPLATE AFTER EACH OF THREE SCANS. ................................... 65 FIG. 17 ALIGNMENT OF THE SSO7C4 AND HISTONE H3 STRUCTURES AND STRUCTURAL COMPARISON BETWEEN HISTONE H3 AND HMFA. ............................................................................................ 73 List of tables TABLE 1. DIFFERENT CLASSES OF ARCHITECTURAL PROTEINS (BRIDGERS, BENDERS, WRAPPERS OR STIFFENER) IN EUKARYOTES, BACTERIA AND ARCHAEA. .............................................................. 9 TABLE 2. DATA COLLECTION AND REFINEMENT STATISTICS FOR THE SSO7C4 CRYSTALS. ................ 22 TABLE 3. BINDING AFFINITIES FOR THE ARGININE MUTANT/WILD-TYPE/C-TERMINALLY TRUNCATED/PROTEINS IN COMPLEX WITH THREE DSDNA FRAGMENTS OF DIFFERENT LENGTHS. ..................................................................................................................................... 44 TABLE 4. STATISTICS OF NUCLEOPROTEIN COMPLEXES IN DIFFERENT FORMS. .................................. 53 TABLE 5. AVERAGE LENGTHS AND WIDTHS OF THE PLASMID AND NUCLEOPROTEIN COMPLEXES. EM IMAGES WERE MEASURED USING IMAGEJ SOFTWARE. ............................................................... 57 TABLE 6. FRET EFFICIENCY AND DISTANCE OF THE DNA DUPLEX ALONE OR BOUND TO SSO7C4 IN BULK FRET EXPERIMENTS. ......................................................................................................... 66

    References
    1. Dillon SC, Dorman CJ. Bacterial nucleoid-associated proteins, nucleoid structure
    and gene expression. Nat Rev Microbiol. 2010;8: 185–195.
    doi:10.1038/nrmicro2261
    2. Luijsterburg MS, White MF, van Driel R, Dame RT. The major architects of
    chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev
    Biochem Mol Biol. 2008;43: 393–418. doi:10.1080/10409230802528488
    3. Luijsterburg MS, Noom MC, Wuite GJL, Dame RT. The architectural role of
    nucleoid-associated proteins in the organization of bacterial chromatin: A
    molecular perspective. J Struct Biol. 2006;156: 262–272.
    doi:10.1016/j.jsb.2006.05.006
    4. Sandman K, Reeve JN. Archaeal chromatin proteins: different structures but
    common function? Curr Opin Microbiol. 2005;8: 656–661.
    doi:10.1016/j.mib.2005.10.007
    5. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure
    of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389: 251–260.
    6. Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. Solvent mediated
    interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J
    Mol Biol. 2002;319: 1097–1113. doi:10.1016/S0022-2836(02)00386-8
    7. Paull TT, Haykinson MJ, Johnson RC. The nonspecific DNA-binding and -bending
    proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein
    structures. Genes Dev. 1993;7: 1521–1534.
    8. Murphy FV, Sweet RM, Churchill ME. The structure of a chromosomal high
    mobility group protein-DNA complex reveals sequence-neutral mechanisms
    important for non-sequence-specific DNA recognition. EMBO J. 1999;18: 6610–
    6618.
    9. Pennings S, Meersseman G, Bradbury EM. Linker histones H1 and H5 prevent the
    mobility of positioned nucleosomes. Proc Natl Acad Sci U S A. 1994;91: 10275–
    10279.
    77
    10. Vignali M, Workman JL. Location and function of linker histones. Nat Struct Biol.
    1998;5: 1025–1028. doi:10.1038/4133
    11. Swinger KK, Lemberg KM, Zhang Y, Rice PA. Flexible DNA bending in HUDNA
    cocrystal structures. EMBO J. 2003;22: 3749–60. doi:10.1093/emboj/cdg351
    12. Dame RT, Goosen N. HU: promoting or counteracting DNA compaction? FEBS
    Lett. 2002; 1–6.
    13. Swinger KK, Rice PA. IHF and HU: flexible architects of bent DNA. Curr Opin
    Struct Biol. 2004;14: 28–35.
    14. Rice PA, Yang S, Mizuuchi K, Nash HA. Crystal structure of an IHF-DNA
    complex: a protein-induced DNA U-turn. Cell. 1996;87: 1295–1306.
    15. Skoko D, Yoo D, Bai H, Schnurr B, Yan J, McLeod SM, et al. Mechanism of
    chromosome compaction and looping by the Escherichia coli nucleoid protein Fis.
    J Mol Biol. 2006;364: 777–98. doi:10.1016/j.jmb.2006.09.043
    16. Stella S, Cascio D, Johnson RC. The shape of the DNA minor groove directs
    binding by the DNA-bending protein Fis. Genes Dev. 2010;24: 814–826.
    doi:10.1101/gad.1900610
    17. Dame RT, Wyman C, Goosen N. H-NS mediated compaction of DNA visualised
    by atomic force microscopy. Nucleic Acids Res. 2000;28: 3504–10.
    doi:10.1093/nar/28.18.3504
    18. Wang W, Li G-W, Chen C, Xie XS, Zhuang X. Chromosome organization by a
    nucleoid-associated protein in live bacteria. Science. 2011;333: 1445–1449.
    doi:10.1126/science.1204697
    19. de los Rios S and Perona JJ. Structure of the Escherichia coli leucine-responsive
    regulatory protein Lrp reveals a novel octameric assembly. J. Mol. Biol.2007;366:
    1589–602.
    20. Tapias A, López G, Ayora S. Bacillus subtilis LrpC is a sequence-independent
    DNA-binding and DNA-bending protein which bridges DNA. Nucleic Acids Res.
    2000;28: 552–559.
    78
    21. Reeve JN, Bailey KA, Li W, Marc F, Sandman K, Soares DJ. Archaeal histones:
    structures, stability and DNA binding. Biochem Soc Trans. 2004;32: 227–230.
    doi:10.1042/BST0320227
    22. Decanniere K, Babu AM, Sandman K, Reeve JN, Heinemann U. Crystal structures
    of recombinant histones HMfA and HMfB from the hyperthermophilic archaeon
    Methanothermus fervidus. J Mol Biol. 2000;303: 35–47.
    23. Maruyama H, Harwood JC, Moore KM, Paszkiewicz K, Durley SC, Fukushima
    H, et al. An alternative beads-on-a-string chromatin architecture in Thermococcus
    kodakarensis. EMBO Rep. 2013;14: 711–717. doi:10.1038/embor.2013.94
    24. Henneman B, Dame RT. Archaeal histones: dynamic and versatile genome
    architects. AIMS Microbiol. 2015;1: 72–81. doi:10.3934/microbiol.2015.1.72
    25. Paquet F, Delalande O, Goffinont S, Culard F, Loth K, Asseline U, Castaing B1,
    Landon C. Model of a DNA-protein complex of the architectural monomeric
    protein MC1 from Euryarchaea. PLOS ONE 2014; 18;9(2):e88809. doi:
    10.1371/journal.pone.0088809.
    26. Driessen RPC, Dame RT. Nucleoid-associated proteins in Crenarchaea. Biochem
    Soc Trans. 2011;39: 116–121.
    27. Wardleworth BN, Russell RJM, Bell SD, Taylor GL, White MF. Structure of Alba:
    An archaeal chromatin protein modulated by acetylation. EMBO J. 2002;21: 4654–
    4662. doi:10.1093/emboj/cdf465
    28. Chou CC, Lin TW, Chen CY, Wang AH-J. Crystal structure of the
    hyperthermophilic archaeal DNA-binding protein Sso10b2 at a resolution of 1.85
    Angstroms. J Bacteriol. 2003;185: 4066–4073. doi:10.1128/JB.185.14.4066-
    4073.2003
    29. Laurens N, Driessen RPC, Heller I, Vorselen D, Noom MC, Hol FJH, et al. Alba
    shapes the archaeal genome using a delicate balance of bridging and stiffening the
    DNA. Nat Commun. 2012;3: 1328. doi:10.1038/ncomms2330
    30. Xuan J, Feng Y. The archaeal Sac10b protein family: conserved proteins with
    divergent functions. Curr Protein Pept Sci. 2012;13: 258–266.
    31. Driessen RPC, Lin S-N, Waterreus W-J, van der Meulen ALH, van der Valk RA,
    Laurens N, et al. Diverse architectural properties of Sso10a proteins: Evidence for
    79
    a role in chromatin compaction and organization. Sci Rep. 2016;6: 29422.
    doi:10.1038/srep29422
    32. Edmondson SP, Kahsai MA, Gupta R, Shriver JW. Characterization of Sac10a, a
    hyperthermophile DNA-binding protein from Sulfolobus acidocaldarius.
    Biochemistry (Mosc). 2004;43: 13026–13036. doi:10.1021/bi0491752
    33. Robinson H, Gao YG, McCrary BS, Edmondson SP, Shriver JW, Wang AH. The
    hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature.
    1998;392: 202–205. doi:10.1038/32455
    34. Gao YG, Su SY, Robinson H, Padmanabhan S, Lim L, McCrary BS, et al. The
    crystal structure of the hyperthermophile chromosomal protein Sso7d bound to
    DNA. Nat Struct Biol. 1998;5: 782–786. doi:10.1038/1822
    35. Chen CY, Ko TP, Lin TW, Chou CC, Chen CJ, Wang AH-J. Probing the DNA
    kink structure induced by the hyperthermophilic chromosomal protein Sac7d.
    Nucleic Acids Res. 2005;33: 430–438. doi:10.1093/nar/gki191
    36. Feng Y, Yao H, Wang J. Crystal structure of the crenarchaeal conserved chromatin
    protein Cren7 and double-stranded DNA complex. Protein Sci. 2010;19: 1253–
    1257. doi:10.1002/pro.385
    37. Driessen RPC, Meng H, Suresh G, Shahapure R, Lanzani G, Priyakumar UD, et
    al. Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing
    rigid bends. Nucleic Acids Res. 2013;41: 196–205. doi:10.1093/nar/gks1053
    38. Oppermann UCT, Knapp S, Bonetto V, Ladenstein R, Jörnvall H. Isolation and
    structure of repressor-like proteins from the archaeon Sulfolobus solfataricus.
    FEBS Lett. 1998;432: 141–144. doi:10.1016/S0014-5793(98)00848-5
    39. Hsu CH, Wang AH-J. The DNA-recognition fold of Sso7c4 suggests a new
    member of SpoVT-AbrB superfamily from archaea. Nucleic Acids Res. 2011;39:
    6764–6774. doi:10.1093/nar/gkr283
    40. Lurz R, Grote M, Dijk J, Reinhardt R, Dobrinski B. Electron microscopic study
    of DNA complexes with proteins from the Archaebacterium Sulfolobus
    acidocaldarius. EMBO J. 1986;5: 3715–3721.
    80
    41. Vaughn JL, Feher V, Naylor S, Strauch MA, Cavanagh J. Novel DNA binding
    domain and genetic regulation model of Bacillus subtilis transition state regulator
    abrB. Nat Struct Biol. 2000;7: 1139–1146. doi:10.1038/81999
    42. Zorzini V, Buts L, Schrank E, Sterckx YGJ, Respondek M, Engelberg-Kulka H,
    et al. Escherichia coli antitoxin MazE as transcription factor: Insights into MazEDNA
    binding. Nucleic Acids Res. 2015;43: 1241–1256. doi:10.1093/nar/gku1352
    43. Lee CC, Maestre-Reyna M, Hsu KC, Wang HC, Liu CI, Jeng WY, et al. Crowning
    proteins: Modulating the protein surface properties using crown ethers. Angew
    Chem Int Ed Engl. 2014;53: 13054–13058. doi:10.1002/anie.201405664
    44. Crane-Robinson C, Dragan AI, Privalov PL. The extended arms of DNA-binding
    domains: a tale of tails. Trends Biochem Sci. 2006;31: 547–552.
    doi:10.1016/j.tibs.2006.08.006
    45. Albright RA, Matthews BW. How Cro and lambda-repressor distinguish between
    operators: the structural basis underlying a genetic switch. Proc Natl Acad Sci U S
    A. 1998;95: 3431–3436. doi:10.1073/pnas.95.7.3431
    46. Beamer LJ, Pabo CO. Refined 1.8 Å crystal structure of the λ repressor-operator
    complex. J Mol Biol. 1992;227: 177–196. doi:10.1016/0022-2836(92)90690-L
    47. Clarke ND, Beamer LJ, Goldberg HR, Berkower C, Pabo CO. The DNA binding
    arm of lambda repressor: critical contacts from a flexible region. Science. 1991;254:
    267–270.
    48. Albright RA, Matthews BW. Crystal structure of lambda-Cro bound to a
    consensus operator at 3.0 Å resolution. J Mol Biol. 1998;280: 137–151.
    doi:10.1006/jmbi.1998.1848
    49. Hubbard AJ, Bracco LP, Eisenbeis SJ, Gayle RB, Beaton G, Caruthers MH. Role
    of the Cro repressor carboxy-terminal domain and flexible dimer linkage in
    operator and nonspecific DNA binding. Biochemistry (Mosc). 1990;29: 9241–9249.
    50. McAfee JG, Edmondson SP, Zegar I, Shriver JW. Equilibrium DNA binding of
    Sac7d protein from the hyperthermophile Sulfolobus acidocaldarius: Fluorescence
    and circular dichroism studies. Biochemistry (Mosc). 1996;35: 4034–4045.
    doi:10.1021/bi952555q
    51. Bock C-T, Franz S, Zentgraf H, Sommerville J. Electron Microscopy of
    Biomolecules. Encyclopedia of Molecular Cell Biology and Molecular Medicine.
    81
    Wiley-VCH Verlag GmbH & Co. KGaA; 2006. Available:
    http://dx.doi.org/10.1002/3527600906.mcb.200300057
    52. Chen S, Vojtechovsky J, Parkinson GN, Ebright RH, Berman HM. Indirect
    readout of DNA sequence at the primary-kink site in the CAP-DNA complex: DNA
    binding specificity based on energetics of DNA kinking. J Mol Biol. 2001;314: 63–
    74. doi:10.1006/jmbi.2001.5089
    53. Chen C-Y, Chang C-C, Yen C-F, Chiu MT-K, Chang W-H. Mapping RNA exit
    channel on transcribing RNA polymerase II by FRET analysis. Proc Natl Acad Sci
    U S A. 2009;106: 127–132. doi:10.1073/pnas.0811689106
    54. Blair RH, Goodrich JA, Kugel JF. Using FRET to monitor protein-induced DNA
    bending: the TBP-TATA complex as a model system. Methods Mol Biol Clifton
    NJ. 2013;977: 203–215. doi:10.1007/978-1-62703-284-1_16
    55. Lnenicek-Allen M, Read CM, Crane-Robinson C. The DNA bend angle and
    binding affinity of an HMG box increased by the presence of short terminal arms.
    Nucleic Acids Res. 1996;24: 1047–1051.
    56. Schultz SC, Shields GC, Steitz TA. Crystal structure of a CAP-DNA complex: the
    DNA is bent by 90 degrees. Science. 1991;253: 1001–1007.
    doi:10.1126/science.1653449
    57. Napoli AA, Lawson CL, Ebright RH, Berman HM. Indirect readout of DNA
    sequence at the primary-kink site in the CAP-DNA complex: Recognition of
    pyrimidine-purine and purine-purine steps. J Mol Biol. 2006;357: 173–183.
    doi:10.1016/j.jmb.2005.12.051
    58. Lawson CL, Swigon D, Murakami KS, Darst SA, Berman HM, Ebright RH.
    Catabolite activator protein: DNA binding and transcription activation. Curr Opin
    Struct Biol. 2004;14: 10–20. doi:10.1016/j.sbi.2004.01.012
    59. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in
    oscillation mode. Methods Enzymol. 1997;276: 307–326. doi:doi: 10.1016/s0076-
    6879(97)76066-x
    60. Schneider TR, Sheldrick GM. Substructure solution with SHELXD. Acta
    Crystallogr D Biol Crystallogr. 2002;58: 1772–1779.
    doi:10.1107/S0907444902011678
    82
    61. Pannu NS, Waterreus W-JJ, Skubák P, Sikharulidze I, Abrahams JP, de Graaff
    RAG. Recent advances in the CRANK software suite for experimental phasing.
    Acta Crystallogr D Biol Crystallogr. 2011;67: 331–337.
    doi:10.1107/S0907444910052224
    62. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al.
    Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol
    Crystallogr. 2011;67: 235–242. doi:10.1107/S0907444910045749
    63. Cowtan K, Main P. Miscellaneous algorithms for density modification. Acta
    Crystallogr D Biol Crystallogr. 1998;54: 487–493.
    doi:10.1107/S0907444997011980
    64. Cowtan K. Modified phased translation functions and their application to
    molecular-fragment location. Acta Crystallogr D Biol Crystallogr. 1998;54: 750–
    756. doi:10.1107/S0907444997016247
    65. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot.
    Acta Crystallogr Sect D. 2010;66: 486–501. doi:10.1107/S0907444910007493
    66. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et
    al. REFMAC5 for the refinement of macromolecular crystal structures. Acta
    Crystallogr Sect D. 2011;67: 355–367. doi:10.1107/S0907444911001314
    67. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ.
    Phaser crystallographic software. J Appl Crystallogr. 2007;40: 658–674.
    doi:10.1107/S0021889807021206
    68. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al.
    MolProbity: All-atom structure validation for macromolecular crystallography.
    Acta Crystallogr D Biol Crystallogr. 2010;66: 12–21.
    doi:10.1107/S0907444909042073
    69. Rossi AM, Taylor CW. Analysis of protein-ligand interactions by fluorescence
    polarization. Nat Protoc. 2011;6: 365–387.
    70. Griffith JD, Christiansen G. Electron microscope visualization of chromatin and
    other DNA-protein complexes. Annu Rev Biophys Bioeng. 1978;7: 19–35.
    doi:10.1146/annurev.bb.07.060178.000315
    71. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of
    image analysis. Nat Meth. 2012;9: 671–675. doi:10.1038/nmeth.2089
    83
    72. MacKerell ADJ, Banavali N, Foloppe N. Development and current status of the
    CHARMM force field for nucleic acids. Biopolymers. 2000;56: 257–265.
    doi:10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W
    73. Hieb AR, Halsey WA, Betterton MD, Perkins TT, Kugel JF, Goodrich JA. TFIIA
    changes the conformation of the DNA in TBP/TATA complexes and increases their
    kinetic stability. J Mol Biol. 2007;372: 619–632. doi:10.1016/j.jmb.2007.06.061

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE