研究生: |
譚 秘 Tanmay Agrawal |
---|---|
論文名稱: |
Simulation of two and three-dimensional incompressible flows using artificial compressibility method 應用人工壓縮法計算二維及三維不可壓縮流流場 |
指導教授: |
林昭安
Lin, Chao-An |
口試委員: |
牛仰堯
黃楓南 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 67 |
中文關鍵詞: | 應用人工壓縮法 、不可壓縮流流場 、多重格點法 |
外文關鍵詞: | Artificial compressibility method, Incompressible flow, Multigrid method |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究利用全顯示多塊網格解穩態與非穩態不可壓縮流.此篇研究求解器是利用人工壓縮網格結合壓力以及速度方程式
對於此求解器是在交錯網格上和collocated grids利用二維及三維上板驅動方腔流體. 此研究利用中央差芬去離散形成交錯網格.以及利用全顯示的MacCormack 在 collocated 網格上
對於上板驅動方腔內流動是測試穩態解Navier-Stokes equation
而 Talyor-Green vortex 還有 Oscillating 是測試非穩態解
本篇研究的主旨是加速求解收斂速度.並根據multi-grid methods利用pseudo-compressibility. 因此. 一個非線性的multi-grid method .通常較FAS方法
對於二維和三維問題.可分別加快到217倍和70倍 加速的速度是取決於multigrid 的大小.然而 隨著雷諾數或者參數變多都將會導致收斂速度變慢
This study focuses on the explicit multigrid solutions of steady and unsteady incompressible flows. An artificial compressibility based solver is adopted to couple the pressure and velocity in governing equations. This solver is validated for two and three-dimensional steady flows on staggered as well as on the collocated grids. The staggered-grid version employs a central-differencing based discretization while the explicit MacCormack scheme is used on the collocated grids. Lid-driven cavity flow is used as a test case for the steady Navier-Stokes equations while decaying Taylor-Green vortex and oscillating lid-driven cavity flow comprises the test cases for unsteady flows. A dual-time stepping within every physical time-step is used for time-accurate results for unsteady test cases.
One of the primary aims of the present work is to accelerate the numerical convergence of this pseudo-compressibility based solver using multigrid methods. Therefore, a non-linear multigrid method, usually called as the full approximation storage (FAS) scheme is implemented on a grid-hierarchy. Multigrid solutions are obtained using up to four grid levels. Accelerations of up to 217 times and 70 times are reported for two and three-dimensional test cases respectively. It has been observed that these accelerations increase with the grid size; however, decrease with the increase in Reynolds number and are parameter dependent.
1. J. Anderson, Computational Fluid Dynamics, McGraw-Hill Education, 1995.
2. J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer Berlin Heidelberg, 2001.
3. S. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, 1980.
4. S. Chen, H. Chen, D. Martnez, W. Matthaeus, Lattice Boltzmann model for simulation of magnetohydrodynamics, Physical Review Letters, 67 (1991) 3776.
5. S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annual review of fluid mechanics, 30 (1998) 329-364.
6. U. Frisch, Lattice gas hydrodynamics in two and three dimensions, Complex systems, 1 (1987) 649-707.
7. P.L. Bhatnagar, E.P. Gross, M. Krook, A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Physical Review, 94 (1954) 511-525.
8. A.J. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of computational physics, 2 (1967) 12-26.
9. P. Louda, K. Kozel, J. Příhoda, Numerical solution of 2D and 3D viscous incompressible steady and unsteady flows using artificial compressibility method, International journal for numerical methods in fluids, 56 (2008) 1399-1407.
10. R. Peyret, Unsteady evolution of a horizontal jet in a stratified fluid, Journal of Fluid Mechanics, 78 (1976) 49-63.
11. H. Tang, F. Sotiropoulos, Fractional step artificial compressibility schemes for the unsteady incompressible Navier–Stokes equations, Computers & fluids, 36 (2007) 974-986.
12. P. Asinari, T. Ohwada, E. Chiavazzo, A.F. Di Rienzo, Link-wise artificial compressibility method, Journal of Computational Physics, 231 (2012) 5109-5143.
13. X. He, G.D. Doolen, T. Clark, Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier–Stokes equations, Journal of Computational Physics, 179 (2002) 439-451.
14. T. Ohwada, P. Asinari, D. Yabusaki, Artificial compressibility method and lattice Boltzmann method: Similarities and differences, Computers & Mathematics with Applications, 61 (2011) 3461-3474.
15. C. Rhie, W. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA journal, 21 (1983) 1525-1532.
16. A. Perrin, H.H. Hu, An explicit finite-difference scheme for simulation of moving particles, Journal of Computational Physics, 212 (2006) 166-187.
17. R.H. Pletcher, J.C. Tannehill, D. Anderson, Computational Fluid Mechanics and Heat Transfer, Third Edition, CRC Press, 2016.
18. P. McHugh, J.D. Ramshaw, Damped artificial compressibility iteration scheme for implicit calculations of unsteady incompressible flow, International journal for numerical methods in fluids, 21 (1995) 141-153.
19. A. Brandt, Multi-level adaptive solutions to boundary-value problems, Mathematics of computation, 31 (1977) 333-390.
20. A. Brandt, Multilevel adaptive computations in fluid dynamics, AIAA Journal, 18 (1980) 1165-1172.
21. A. Jameson, Solution of the Euler equations for two dimensional transonic flow by a multigrid method, Applied mathematics and computation, 13 (1983) 327-355.
22. M. Thompson, J.H. Ferziger, An adaptive multigrid technique for the incompressible Navier-Stokes equations, Journal of computational Physics, 82 (1989) 94-121.
23. D. Drikakis, O. Iliev, D. Vassileva, A nonlinear multigrid method for the three-dimensional incompressible Navier–Stokes equations, Journal of Computational Physics, 146 (1998) 301-321.
24. P. Wesseling, C.W. Oosterlee, Geometric multigrid with applications to computational fluid dynamics, Journal of Computational and Applied Mathematics, 128 (2001) 311-334.
25. M.J. Berger, A. Jameson, An adaptive multigrid method for the Euler equations, in: Ninth International Conference on Numerical Methods in Fluid Dynamics, Springer, 1985, pp. 92-97.
26. D.J. Mavriplis, A. Jameson, Multigrid solution of the Navier-Stokes equations on triangular meshes, AIAA journal, 28 (1990) 1415-1425.
27. M. Unser, Multigrid adaptive image processing, in: Image Processing, 1995. Proceedings., International Conference on, IEEE, 1995, pp. 49-52.
28. P. Wesseling, Introduction To Multigrid Methods, in, DTIC Document, 1995.
29. R. Chima, G.M. Johnson, Efficient solution of the Euler and Navier-Stokes equations with a vectorized multiple-grid algorithm, AIAA journal, 23 (1985) 23-32.
30. G.M. Johnson, Multiple-grid acceleration of Lax-Wendroff algorithms, (1982).
31. G.M. Johnson, Multiple-grid convergence acceleration of viscous and inviscid flow computations, Applied mathematics and computation, 13 (1983) 375-398.
32. N. Ron-Ho, A multiple-grid scheme for solving the Euler equations, AIAA journal, (2012).
33. G. Johnson, Flux-based acceleration of the Euler equations, (1983).
34. R.V. Chima, E. Turkel, S. Schaffer, Comparison of three explicit multigrid methods for the Euler and Navier-Stokes equations, (1987).
35. U. Ghia, K.N. Ghia, C. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of computational physics, 48 (1982) 387-411.
36. S. Albensoeder, H.C. Kuhlmann, Accurate three-dimensional lid-driven cavity flow, Journal of Computational Physics, 206 (2005) 536-558.
37. G. Taylor, A. Green, Mechanism of the Production of Small Eddies from Large Ones, Proceedings of the Royal Society of London Series A, 158 (1937) 499-521.
38. S.S. Mendu, P. Das, Fluid flow in a cavity driven by an oscillating lid—A simulation by lattice Boltzmann method, European Journal of Mechanics-B/Fluids, 39 (2013) 59-70.
39. W. Zhang, C.H. Zhang, G. Xi, An explicit Chebyshev pseudospectral multigrid method for incompressible Navier–Stokes equations, Computers & Fluids, 39 (2010) 178-188.