簡易檢索 / 詳目顯示

研究生: 龔家萱
Kung, Chia-Hsuan
論文名稱: 人類轉譯後修飾蛋白(SUMO)聚合鏈與人類環指蛋白4上的多SUMO作用紋區之分子交互作用機制
Molecular Mechanism of Poly-SUMO Chain Recognition by RNF4-SIMs Domain
指導教授: 黃太煌
Huang, Tai-Huang
余靖
Yu, Chin
口試委員: 黃太煌 博士
Dr. Tai-Huang Huang
余靖 博士
Dr. Chin Yu
施修明 博士
Dr. Hsiu-Ming Shih
陳金榜 博士
Dr. Chinpan Chen
陳瑞華 博士
Dr. Ruey-Hwa Chen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 106
中文關鍵詞: small ubiquitin-like modifier (SUMO)SUMO chainSUMO interaction motif (SIM)RING finger 4 (RNF4)nuclear magnetic resonance (NMR)small-angle X-ray scattering (SAXS)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • SUMOylation is an important post-translational modification involved in regulating various cellular processes. Similar to ubiquitylation, sumoylation leads to the formation of an isopeptide bond between the C-terminal glycine of SUMO to an acceptor lysine within consensus Ψ-K-x-D/E motif on the target protein. Unlike SUMO1, SUMO2/3 carries a sumoylation motif; thus, similar to ubiquitin, SUMO2/3 can form a poly-SUMO chain. SUMO1 may incorporate in such a chain but as an end cap to terminate further elongation.
    Recently, a novel non-covalent interaction mode of SUMO recognition has been identified by means of SIM (SUMO interaction motif), which has a consensus sequence of V/I-x-V/I-V/I. The SIM interacts with SUMO by binding to the groove between second β-strand and α-helix. Interestingly, the E3 ubiquitin-protein ligase RNF4 contains four tandem SIM repeats for selective interaction with poly-SUMO modified proteins, which it targets for ubiquitin-mediated proteasome degradation. Here, a multifaceted biophysical approach, including the usage of NMR, X-Ray crystallography, SAXS and a knowledge-based HADDOCK model, was employed to characterise structures of the RNF4-SIMs domain and tetra-SUMO2 chain to elucidate the interaction between them.


    Abbreviations Abstract Acknowledgment Table of Contents List of Tables List of Figures 1 Introduction 1.1 SUMOylation 1.2 Poly-SUMOylation 1.3 SUMO interaction motif (SIM) 1.4 RNF4, SUMO-targeted ubiquitin E3 ligase (STUbLs) 2 Material and Methods 2.1 Cloning and Protein purification 2.2 Circular Dichorism 2.3 NMR spectroscopy 2.4 Paramagnetic Relaxation Enhancement (PRE) 2.5 GST Pull-Down experiment 2.6 X-ray crystallography 2.7 Small-angle X-ray Scattering (SAXS) 2.8 Experiment-guided modelling 2.9 Isothermal Titration Calorimetry (ITC) 2.10 Surface Plasmon Resonance (SPR) 3 Results 3.1 Structural Characterizations of RNF4-SIMs Domain 3.2 Interaction of SIM peptide to SUMO1 and SUMO2 3.3 Binding orientation of individual SIM peptide to SUMO2 3.4 Binding orientation of SIM23 MTSL peptide to di-SUMO2 3.5 Binding avidity in-between SIMs domain and SUMO2 chain 3.6 Effect of SIM mutants on binding to SUMO2 chain 3.7 Structure of tetra-SUMO2 and its complex with RNF4-SIMs domain 3.8 The polyarginine segment enhance SIM4/SUMO2 binding 3.9 Validation of the complex model using ITC 3.10 A possible binding mechanism of poly-SUMO2:RNF4-SIMs domain 4 Discussion 5 Conclusion, Implication and Future Emphasis 6 Reference 7 Appendix  

    1 Schimmel, J., and Vertegaal, A.C.O. (2009) SUMOylation. In:Encyclopedia of Life Sciences (ELS), 1-8
    2 Gareau, J. R., and Lima, C.D. (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol. 11, 861-871
    3 Hay, R. T. (2013) Decoding the SUMO signal. Biochemical Society transactions. 41, 463-473
    4 Tatham, M. H., Geoffroy, M. C., Shen, L., Plechanovova, A., Hattersley, N., Jaffray, E. G., Palvimo, J. J. and Hay, R. T. (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature cell biology. 10, 538-546
    5 Liu, B. and Shuai, K. (2008) Regulation of the sumoylation system in gene expression. Curr Opin Cell Biol. 20, 288-293
    6 Xu, Z., and Au, S.W.N. (2005) Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1. The Biochemical journal. 386, 325-330
    7 Chang, C. C., et. al. (2011) Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Molecular cell. 42, 62-74
    8 Sekiyama, N., Arita, K., Ikeda, Y., Hashiguchi, K., Ariyoshi, M., Tochio, H., Saitoh, H. and Shirakawa, M. (2010) Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45. Proteins. 78, 1491-1502
    9 Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C., Tatham, M. H., Hay, R. T., Lamond, A. I., Mann, M. and Vertegaal, A. C. O. (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics. 7, 132-144
    10 Knipscheer, P., van Dijk, W. J., Olsen, J. V., Mann, M. and Sixma, T. K. (2007) Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. Embo J. 26, 2797-2807
    11 Cheng, C. H., et. al. (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes & Development. 20, 2067-2081
    12 Schwartz, D. C., Felberbaum, R. and M., H. (2007) The Ulp2 SUMO protease is required for cell division following termination of the DNA damage checkpoint. Molecular and Cellular Biology. 27, 6948-6961
    13 Bruderer, R., et. al. (2011) Purification and identification of endogenous polySUMO conjugates. Embo Rep. 12, 142-148
    14 Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G. and Chen, Y. (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proceedings of the National Academy of Sciences. 101, 14373-14378
    15 Escobar-Cabrera, E., et. al. (2011) Characterizing the N- and C-terminal Small ubiquitin-like modifier (SUMO)-interacting motifs of the scaffold protein DAXX. J. Biol. Chem. 286, 19816-19829
    16 Sekiyama, N., Ikegami, T., Yamane, T., Ikeguchi, M., Uchimura, Y., Baba, D., Ariyoshi, M., Tochio, H., Saitoh, H. and Shirakawa, M. (2008) Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J. Biol. Chem. 283, 35966-35975
    17 Sun, H., and Hunter, T. (2012) Poly-small ubiquitin-like modifier (PolySUMO)-binding proteins identified through a string search. J. Biol. Chem. . 287, 42071-42083
    18 Miteva, M., Keusekotten, K., Hofmann, K., and et. al. (2000) Sumoylation as a Signal for Polyubiquitylation and Proteasomal Degradation. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; Avaliable from http://www.ncbi.nlm.nih.gov/books/NBK25447
    19 Ullmann, R., Chien, C. D., Avantaggiati, M. L. and Muller, S. (2012) An Acetylation Switch Regulates SUMO-Dependent Protein Interaction Networks. Molecular cell. 46, 759-770
    20 Lang, M., Jegou, T., Chung, I., Richter, K., Munch, S., Udvarhelyi, A., Cremer, C., Hemmerich, P., Engelhardt, J., Hell, S. W. and Rippe, K. (2010) Three-dimensional organization of promyelocytic leukemia nuclear bodies. J Cell Sci. 123, 392-400
    21 Petrie, K. and Zelent, A. (2008) Marked for death. Nature cell biology. 10, 507-509
    22 Poulsen, S. L., Hansen, R. K., Wagner, S. A., van Cuijk, L., van Belle, G. J., Streicher, W., Wikstrom, M., Choudhary, C., Houtsmuller, A. B., Marteijn, J. A., Bekker-Jensen, S. and Mailand, N. (2013) RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. J Cell Biol. 201, 797-807
    23 Plechanovova, A., Jaffray, E. G., McMahon, S. A., Johnson, K. A., Navratilova, I., Naismith, J. H. and Hay, R. T. (2011) Mechanism of ubiquitylation by dimeric RING ligase RNF4. Nature structural & molecular biology. 18, 1052-1059
    24 Lallemand-Breitenbach, V., Jeanne, M., Benhenda, S., Nasr, R., Lei, M., Peres, L., Zhou, J., Zhu, J., Raught, B. and de The, H. (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nature cell biology. 10, 547-555
    25 Percherancier, Y., Germain-Desprez, D., Galisson, F., Mascle, X. H., Dianoux, L., Estephan, P., Chelbi-Alix, M. K. and Aubry, M. (2009) Role of SUMO in RNF4-mediated promyelocytic leukemia protein (PML) degradation: sumoylation of PML and phospho-switch control of its SUMO binding domain dissected in living cells. The Journal of biological chemistry. 284, 16595-16608
    26 Liew, C. W., Sun, H., Hunter, T., and Day, C. L. (2010) RING domain dimerization is essential for RNF4 function. The Biochemical journal. 431, 23-29
    27 Plechanovova, A., Jaffray, E. G., Tatham, M. H., Naismith, J. H. and Hay, R. T. (2012) Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature. 489, 115-U135
    28 Keusekotten, K., Bade, V. N., Meyer-Teschendorf, K., Sriramachandran, A. M., Fischer-Schrader, K., Krause, A., Horst, C., Schwarz, G., Hofmann, K., Dohmen, R. J. and Praefcke, G. J. K. (2013) Multivalent interactions of the SUMO-interaction motifs in the RING-finger protein 4 (RNF4) determine the specificity for chains of the small ubiquitin-related modifier (SUMO). Biochemical Journal. 457, 207-214
    29 Lin, D.-Y., Lai, M.-Z., Ann, D. K. and Shih, H.-M. (2003) Promyelocytic Leukemia Protein (PML) Functions as a Glucocorticoid Receptor Co-activator by Sequestering Daxx to the PML Oncogenic Domains (PODs) to Enhance Its Transactivation Potential. J. Biol. Chem. 278, 15958-15965

    30 Yang, S.-h., and Sharrocks, A.D. (2010) The SUMO E3 Ligase Activity of Pc2 is coordinated through a SUMO Interaction Motif. Molecular and Cellular Biology. 30, 2193-2205
    31 Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., Ulrich, E. L., Markley, J. L., Ionides, J. and Laue, E. D. (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins. 59, 687-696
    32 Van Horn, W. D., Beel, A. J., Kang, C. and Sanders, C. R. (2010) The Impact of Window Functions on NMR-Based Paramagnetic Relaxation Enhancement Measurements in Membrane Proteins. Biochim Biophys Acta. 1798, 140-149
    33 Iwahara, J., Schwieters, C. D. and Clore, G. M. (2004) Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J. Am. Chem. Soc. 126, 5879-5896
    34 McCoy, A. J., Grosse-kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. and Read, R. J. (2007) Phaser crystallographic software. J. Appl. Cryst. 40, 658-674
    35 Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 60, 2126-2132
    36 Jeng, U., Su, C. H., Su, C. J., Liao, K. F.,Chuang, W. T., Lai, Y. H., Chang, J. W., Chen, Y. J., et. al. (2010) A small/wide-angle X-ray scattering instrument for structural characterization of air-liquid interfaces, thin films and bulk specimens. J. Appl. Cryst. 43, 110–121
    37 Svergun, D. I., Barberato, C. and Koch, M.H.J. (1995) CRYSOL - a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates J. Appl. Cryst. 28, 768-773
    38 Konarev, P. V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J. and Svergun, D.I. . (2003) PRIMUS - a Windows-PC based system for small-angle scattering data analysis. J Appl Cryst. 36, 1277-1282.
    39 Svergun, D. I., Petoukhov, M.V. and Koch, M.H.J. (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophysical Journal. 80, 2946-2953
    40 Volkov, V. V., and Svergun, D. I. (2003) Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Cryst. 36, 860-864
    41 Svergun, D. I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495-503
    42 Konarev, P. V., Petoukhov, M. V., Volkov, V. V. and Svergun, D. I. (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. Journal of Applied Crystallography. 39, 277-286
    43 Bernado, P., Mylonas, E., Petoukhov, M. V., Blackledge, M. and Svergun, D. I. (2007) Structural Characterization of Flexible Proteins Using Small-Angle X-ray Scattering. J. Am. Chem. Soc. . 129, 5656-5664
    44 Dominguez, C., Boelens, R. and Bonvin, A. M. (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. . J. Am. Chem. Soc. 125, 1731-1737
    45 Cornilescu, G., Delaglio, F., and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. Journal of Biomolecular NMR. 13, 289-302
    46 van Dijk, A. D. J., Fushman, D. and Bonvin, A. M. J. J. (2005) Various strategies of using residual dipolar couplings in NMR-driven protein docking: Application to Lys48-linked Di-ubiquitin and validation against N-15-relaxation data. Proteins-Structure Function and Bioinformatics. 60, 367-381
    47 Karaca, E. and Bonvin, A. M. J. J. (2013) On the usefulness of ion-mobility mass spectrometry and SAXS data in scoring docking decoys. Acta Crystallogr D. 69, 683-694
    48 Wishart, D. S. and Case, D. A. (2001) Use of chemical shifts in macromolecular structure determination. Methods in Enzymology. 338, 3-34
    49 Tamiola, K. and Mulder, F. A. A. (2012) Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins. Biochem. Soc. Trans. 40, 1014-1020
    50 Lipfert, J. and Doniach, S. (2007) Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu Rev Bioph Biom. 36, 307-327
    51 Rambo, R. P. and Tainer, J. A. (2013) Super - Resolution in Solution X-Ray Scattering and Its Applications to Structural Systems Biology Annu. Rev. Biophys. 42, 415-441
    52 Rambo, R. P. and Tainer, J. A. (2011) Characterizing Flexible and Intrinsically Unstructured Biological Macromolecules by SAS using the Porod-Debye Law. Biopolymers. 95
    53 Chang, C.-F., Chou, H.-T., Chuang, J.L., Chuang, D.T., and Huang, T.-h. (2002) Solution Structure and Dynamics of the Lipoic Acid-bearing Domain of Human Mitochondrial Branched-chain alpha -Keto Acid Dehydrogenase Complex. J. Biol. Chem. 277, 15865-15873
    54 Chang, C.-F., et. al. . (2006) Structure of the Subunit Binding Domain and Dynamics of the Di-domain Region from the Core of Human Branched Chain alpha-Ketoacid Dehydrogenase Complex. J. Biol. Chem. 281, 28345-28353
    55 Farrow, N. A., Zhang, O., Szabo, A., Torchia, D.A., and Kay, L.E. (1995) Spectral Density mapping using 15N relaxation data exclusively. J. Biomol. NMR. 6, 153-162
    56 Lefevre, L.-F., Dayie, K.T., Peng, J.W. and Wagner, G. . (1996) Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry. 35, 1674-1686
    57 Ishima, R. a. N., K. (1995) Quasi-spectral density function analysis for nitrogen-15 nuclei inproteins. J. Magn. Resonance. B108, 73-76
    58 Hofmann, K. and Falquet, L. (2001) A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci. 26, 347-350
    59 Fisher, R. D., et. al. (2003) Structure and ubiquitin binding of the ubiquitin-interacting motif. Journal of Biological Chemistry. 278, 28976-28984
    60 Song, A. X., Zhou, C. J., Peng, Y., Gao, X. C., Zhou, Z. R., Fu, Q. S., Hong, J., Lin, D. H. and Hu, H. Y. (2010) Structural Transformation of the Tandem Ubiquitin-Interacting Motifs in Ataxin-3 and Their Cooperative Interactions with Ubiquitin Chains. Plos One. 5
    61 Sato, Y., Yoshikawa, A., Mimura, H., Yamashita, M., Yamagata, A. and Fukai, S. (2009) Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. Embo J. 28, 2461-2468
    62 Kulathu, Y. and Komander, D. (2012) Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13, 508-523
    63 Keusekotten, K., Elliott, P. R., Glockner, L., Fiil, B. K., Damgaard, R. B., Kulathu, Y., Wauer, T., Hospenthal, M. K., Gyrd-Hansen, M., Krappmann, D., Hofmann, K. and Komander, D. (2013) OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin. Cell. 153, 1312-1326
    64 Hecker, C.-M., Rabiller, M., Haglund, K., Bayer, P. and Dikic, I. (2006) Specification of SUMO1- and SUMO2-interacting Motifs. J. Biol. Chem. 281, 16117-16127
    65 Wright, P. E. and Dyson, H. J. (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. Journal of Molecular Biology. 293, 321-331
    66 Dunker, A. K., et. al. (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pacific Symposium on Biocomputing, 473 - 484
    67 Dyson, H. J. (2011) Expanding the proteome: disordered and alternatively folded proteins. Quarterly reviews of biophysics. 44, 467-518
    68 Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H. and Hay, R. T. (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. . 276, 35368-35374
    69 Namanja, A. T., Li, Y. J., Su, Y., Wong, S., Lu, J. J., Colson, L. T., Wu, C. G., Li, S. S. C. and Chen, Y. (2012) Insights into High Affinity Small Ubiquitin-like Modifier (SUMO) Recognition by SUMO-interacting Motifs (SIMs) Revealed by a Combination of NMR and Peptide Array Analysis. Journal of Biological Chemistry. 287, 3231-3240
    70 Xu, Y., et. al. (2014) Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4. Nat. Commun. . 5:4217
    71 Kung, C. C.-H., Naik, M.T., Wang, S.-H., and et. al. (2014) Structural Analysis of Poly-SUMO Chain Recognition by RNF4-SIMs Domain. Biochemical Journal. 462, 53-65
    72 Sims, J. J. and Cohen, R. E. (2009) Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Molecular cell. 33, 775-783
    73 Klug, H., et. al (2013) Ubc9 Sumoylation Controls SUMO Chain Formation and Meiotic Synapsis in Saccharomyces cerevisiae. Molecular cell. 50, 625-636
    74 Hunter, T., and Sun, H. (2008) Crosstalk Between the SUMO and Ubiquitin Pathways. Ernst Schering Foundation Symposium Proceedings. 1, 1-16
    75 Rojas-Fernandez, A., et. al. (2014) SUMO Chain-Induced Dimerization Activates RNF4. Molecular cell. 53, 880-892
    76 Everett, R. D., Boutell, C., and Hale, B.G. (2013) Interplay between viruses and host sumoylation pathways. Nature Reviews Microbiology 11, 400-411
    77 Garnier, J., Gibrat, J.-F., and Robson, B. (1996) GOR secondary structure prediction method version IV. Methods in Enzymology. 266, 540-553
    78 McGuffin, L. J., Bryson, K., and Jones, D.T. (2000) The PSIPRED protein structure prediction server. Bioinformatics. 16, 404-405
    79 Chou, P. Y., and Fasman, G.D. (1974) Prediction of protein conformation. Biochmistry 13, 222-245
    80 Chou, P. Y., and Fasman, G.D. (1974) Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry. 13, 211-222
    81 Cole, C., Barber, J.D., and Barton, G.J. (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Research 35, W197-W201

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE