研究生: |
李博祥 Lee, Po-Hsiang |
---|---|
論文名稱: |
矽離子佈植技術對於製作相變化記憶體材料之應用研究 Applications of Using Silicon Ion Implantation Techniques in Fabricating Phase Change Memory Materials |
指導教授: |
梁正宏
Liang, Jenq-Horng 金重勳 Chin, Tsung-Shune |
口試委員: |
蔡銘進
金重勳 葉宗洸 謝宗雍 梁正宏 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 相變化記憶體 、Ge2Sb2Te5 、結晶動力學 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相變化記憶體(phase change memory)是近年來備受矚目的非揮發性記憶體。其係利用電流脈衝使薄膜升降溫,使記憶體在非晶態 (高阻態)與結晶態 (低阻態)之間進行快速且可逆地相變化,以達到儲存資料之目的。Ge2Sb2Te5為一最常用於相變化記錄之相變材料,由材料的觀點視之,仍有許多缺點需要改進:Ge2Sb2Te5之結晶溫度低(~160 ℃)使得非晶態之溫度穩定性不足,造成記憶體之數據留存溫度不足;且其熔點高(~ 620 ℃)造成記憶體非晶化的過程中需要過高的RESET電流脈衝,造成過多之能量耗損。
本研究第一部份探討硼離子佈植於Ge2Sb2Te5,藉由硼離子引入進行材料改質。當硼含量增加(佈植劑量5E14至5E15 ion/cm2),結晶溫度分別達167 ℃和169 ℃,提高2和4℃。再藉由恆溫結晶動力學可計算出結晶活化能分別為2.92與2.96 eV,並利用外插的方式估計其十年的數據留存溫度分別比未佈植者提高2和5℃,達85 ℃和88 ℃。晶體結構分析顯示,當劑量達到5E15 ion/cm2時,硼離子可部分抑制高溫HCP相的形成。結晶化所需時間隨著劑量增加而上升。
第二部份探討矽離子佈植於Ge2Sb2Te5,藉由矽離子引入進行材料改質。當矽含量越高(佈植劑量5E15至5E16 ion/cm2),結晶溫度達177 ℃和178 ℃,有效提高12和13℃。。由恆溫結晶動力學可計算出結晶活化能分別為3.3與3.9 eV,並利用外插的方式估計其十年數據留存溫度分別比未佈植者提高13和24 ℃,達96 ℃和107 ℃,如此可有效提升Ge2Sb2Te5非晶態穩定性。晶體結構分析顯示,隨著佈植劑量上升,可有效阻礙晶粒成長。因此結晶態電阻上升,可以降低操作電流與減少能量耗損。當劑量達到5E16 ion/cm2時,矽離子已完全抑制HCP相形成。結晶化所需時間隨著劑量增加而上升。
[1] Stefan Lai and Tyler Lowery, “OUM-A 180 nm Nonvolatile Memory Cell Element Technology For Stand Alone and Embedded Applications”, IEDM Tech. Dig., 2001, 803.
[2] S. R. Ovshinsky, Phys. Rev. Lett., 21, 1968, 1450.
[3] S. R. Ovshinsky, “Proceedings of the annual national conference on industrial research”, Chicago, Illinois, 1969, 86.
[4] S. R. Ovshinsky et al., “Symmertrical Current Controlling Device”, US Patent, 3,271,591, 1966.
[5] 蔡松雨,「相變化材料發展新趨勢」,工業材料雜誌,台灣,中華民國九十年,p.145
[6] J.Feinleib et al., Appl. Phys. Lett., 18, 1971, 254.
[7] N. Yamada, MRS Bulletin, Sep, 1996, 48.
[8] M. Chen et al., Appl. Phys. Lett., 49, 1986, 502.
[9] N. Kh. Abrikosov, and G. T. Danilova-Dobryakora, Inorganic Materials, 1(2), 1965, 187.
[10] B. Legendre, and C. Hancheng, Thermochimica acta, 78, 1984, 141.
[11] S. Bordas and M. T. Clavaguera-Mora, Thermochimica acta, 107, 1986, 239.
[12] N. Yamada, E. Ohno, K. Nishiuchi, and N. Akahira, J. Appl. Phys., 69 (5), 1991, 2849.
[13] E. J. Evans, J. H. Helbers, and S. R. Ovshinsky, J. Non-cryst. Solids, 2, 1970, 334.
[14] N. Yamada, E. Ohno, N. Akahira, K.Nishiuchi, K. Nagata, and M.Takao, J. Appl. Phys., 26 Suppl. 26-4, 1987, 61.
[15] W. Wetnic, Materials Today, 11, 2008, 20.
[16] Wikipedia、科技政策研究與資訊中心(STPI).
[17] Ahn S.J., Song Y.J., IEEE Internationl Electron Devices Meeting, 2004, 907.
[18] Chen, Y.C., “Ultra-Thin Phase-Change Bridge Memory Device Using GeSb”, IEDM Tech. Dig., 2006.
[19] S. R. Ovshinsky, J. Non-cryst. Solids, 2, 1970, 99.
[20] Adler, D., Electronics, 1970. 43(61).
[21] S.R. Ovshinsky, IEEE Transactions on Electron Devices, 20, 1973, 91.
[22] CAI Yan-Fei, CHIN.PHYS.LETT. , 24, 2007, 781.
[23] M. Wuttig, nature materials, 6, 2007, 824.
[24] S. Hudgens, MRS Bulletin, Nov., 2004, 1.
[25] M. Libera, and M. Chen, MRS Bulletin, Apr., 1990, 502.
[26] J. B. Park, Journal of the Electrochemical Society, 154 (3) H139-H141, 2007.
[27] 洪敬毅,「非揮發記憶體用銻基相變化材料開發」,國立清華大學材料科學工程所,碩士論文,中華民國九十七年
[28] Lv, S.L., et al., “High Speed and Ultra-Low-Power Phase Change Line Cell Memory Based on SiSb Thin Films with Nanoscale Gap of Electrodes Less Than 100 nm”, Chinese Physics Letters, 25(11), 2008, 4174-4176.
[29] Lacaita, A.L., “Phase change memories: State-of-the-art, challenges and perspectives”, Solid-State Electronics, 50(1), 2006, 24-31.
[30] S.L. Cho, e.a., “Highly Scalable On-axis Confined Cell Structure for High Density PRAM beyond 256Mb”, IEDM Tech. Dig., 2005, 96-97.
[31] Park, Y.S., et al., “Writing current reduction in phase change memory device withU-shaped heater (PCM-U)”, Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 45(20-23), 2006, L516-L518.
[32] Y. H. Ha, e.a., “An Edge Contact Type Cell for Phase Change RAM Featuring Very Low Power Consumption. Sym”, VLSI Tech. Dig., 2003, 175-176.
[33] Jeong, C.W., et al., “Highly reliable ring-type contact for high-density phase change memory”, Japanese Journal of Applied Physics Part 1- Regular Papers Brief Communications & Review Papers, 45(4B), 2006, 3233-3237
[34] Y.J. Song, e.a., “Advanced Ring Type Contact Technology for High Density Phase Change Memory”, Proceedings of ESSDERC, 2005, 513-516.
[35] S. Privitera, Nuclear Instruments and Methods in Physics Research B, 257, 2007, 352.
[36] B. Liu, Z. Song, Fifth International Conference on Thin Film Physics and Applications, 5774, 2004, 287.
[37] B. Liu, Z. Song, Materials Science and Engineering B, 119, 2005, 125.
[38] R. De Bastiani, A.M. Piro, Nuclear Instruments and Methods in Physics Reserch B, 266, 2008, 2511.
[39] B. Qiao, J. Feng, Applied Surface Science, 252, 2006, 8404.
[40] Yu-Jen Huang, journal of Applied Physics, 106, 2009, 034916.
[41] M. H. Jang, Applied Physics Letters, 95, 2009, 012102.
[42] Johnson, W.A. and Mehl, K.F., “Transaction of American Institute of Mining and Metallurgy Engineering”, 135, 1981, 315.
[43] Avrami, M., J. Chem. Phys., 7, 1939, 1103.
[44] Avrami, M., J. Chem. Phys., 8,1940, 212.
[45] Avrami, M., J. Chem. Phys., 9, 1941, 177.
[46] 王世昌,「不同佈植與退火參數對於矽化硼分子離子佈植技術的特性影響研究」,
國立清華大學工程與系統科學所,碩士論文,中華民國九十五年
[47] Jr., A.U., The Bell System Technical Journal, 34, 1955, 105.
[48] F. M. Smits, The Bell System Technical Journal, 37, 1958, 711-718.
[49] http://mse.nthu.edu.tw/~jch/surface/report/873458/figure/1.html
[50] Christian, J.W., Transformations in Metals and Alloys, 1975, 15-22.
[51] Pirovano, A., et al., “Reliability study of phase-change nonvolatile memories”, IEEE Transactions on Device and Materials Reliability, 4(3), 2004, 422-427.
[52] Kalb, J.A., F. Spaepen, and M. Wuttig, “Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording”, Journal of Applied Physics, 98(5), 2005, 054910.
[53] Russo, U., et al., “Intrinsic data retention in nanoscaled phase-change memories - Part I: Monte Carlo model for crystallization and percolation”, IEEE Transactions on Electron Devices, 53(12), 2006, 3032-3039.
[54] Russo, U., D. Ielmini, and A.L. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation”, IEEE Transactions on Electron Devices, 54(10), 2007, 2769-2777.
[55] Wei, X.Q., et al., “Thickness dependent nano-crystallization in Ge2Sb2Te5 films and its effect on devices”, Japanese Journal of Applied Physics, 46(4B), 2007, 2211-2214.
[56] Redaelli, A., et al., “A reliable technique for experimental evaluation of crystallization activation energy in PCMs”, IEEE Electron Device Letters, 29(1), 2008, 41-43.
[57] Nonaka, T., et al., “Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase”, Thin Solid Films, 370(1-2), 2000, 258-261.
[58] Morales-Sanchez, E., et al., “Structural, electric and kinetic parameters of ternary alloys of GeSbTe”, Thin Solid Films, 471(1-2), 2005, 243-247.
[59] Friedrich, I., et al., “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements”, Journal of Applied Physics, 87(9), 2000, 4130-4134.
[60] S.M. Jeong, et al., “Influence of Silicon Doping on the Properties of Sputtered Ge2Sb2Te5 Thin Film”, Japanese Journal of Applied Physics 48, 2009, 045503.
[61] S.J. Park, et al., “Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5”, Semicond. Sci. Technol, 23, 2008, 105006.
[62] B. D. Cullity and S. R. Stock: in Elements of X-ray Diffraction (Prentice-Hall, Upper Saddle River, NJ, 2001) p.170.