簡易檢索 / 詳目顯示

研究生: 李博祥
Lee, Po-Hsiang
論文名稱: 矽離子佈植技術對於製作相變化記憶體材料之應用研究
Applications of Using Silicon Ion Implantation Techniques in Fabricating Phase Change Memory Materials
指導教授: 梁正宏
Liang, Jenq-Horng
金重勳
Chin, Tsung-Shune
口試委員: 蔡銘進
金重勳
葉宗洸
謝宗雍
梁正宏
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 95
中文關鍵詞: 相變化記憶體Ge2Sb2Te5結晶動力學
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相變化記憶體(phase change memory)是近年來備受矚目的非揮發性記憶體。其係利用電流脈衝使薄膜升降溫,使記憶體在非晶態 (高阻態)與結晶態 (低阻態)之間進行快速且可逆地相變化,以達到儲存資料之目的。Ge2Sb2Te5為一最常用於相變化記錄之相變材料,由材料的觀點視之,仍有許多缺點需要改進:Ge2Sb2Te5之結晶溫度低(~160 ℃)使得非晶態之溫度穩定性不足,造成記憶體之數據留存溫度不足;且其熔點高(~ 620 ℃)造成記憶體非晶化的過程中需要過高的RESET電流脈衝,造成過多之能量耗損。
    本研究第一部份探討硼離子佈植於Ge2Sb2Te5,藉由硼離子引入進行材料改質。當硼含量增加(佈植劑量5E14至5E15 ion/cm2),結晶溫度分別達167 ℃和169 ℃,提高2和4℃。再藉由恆溫結晶動力學可計算出結晶活化能分別為2.92與2.96 eV,並利用外插的方式估計其十年的數據留存溫度分別比未佈植者提高2和5℃,達85 ℃和88 ℃。晶體結構分析顯示,當劑量達到5E15 ion/cm2時,硼離子可部分抑制高溫HCP相的形成。結晶化所需時間隨著劑量增加而上升。
    第二部份探討矽離子佈植於Ge2Sb2Te5,藉由矽離子引入進行材料改質。當矽含量越高(佈植劑量5E15至5E16 ion/cm2),結晶溫度達177 ℃和178 ℃,有效提高12和13℃。。由恆溫結晶動力學可計算出結晶活化能分別為3.3與3.9 eV,並利用外插的方式估計其十年數據留存溫度分別比未佈植者提高13和24 ℃,達96 ℃和107 ℃,如此可有效提升Ge2Sb2Te5非晶態穩定性。晶體結構分析顯示,隨著佈植劑量上升,可有效阻礙晶粒成長。因此結晶態電阻上升,可以降低操作電流與減少能量耗損。當劑量達到5E16 ion/cm2時,矽離子已完全抑制HCP相形成。結晶化所需時間隨著劑量增加而上升。


    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 前言 1 第二章 文獻回顧 4 2.1 相變化材料的發展歷程 4 2.2 相變化記憶體技術的發展現況 10 2.3 相變化記憶體的記錄原理 12 2.4 相變化記憶體的材料需求 16 2.4.1 寫入能力 17 2.4.2 擦拭能力 18 2.4.3 讀取能力 18 2.4.4 資料穩定性 20 2.4.5 循環擦寫能力 21 2.5 元件結構與特性 21 2.6 相變化材料的改質技術 26 2.6.1 離子佈植 26 2.6.2 共鍍法 28 第三章 實驗原理與方法 30 3.1 SRIM 電腦模擬計算程式 32 3.2 離子佈植 33 3.3 變溫阻值量測 37 3.4 四點探針儀 38 3.5 二次離子質譜儀 40 3.6 X光薄膜繞射分析 44 3.7 結晶動力學 45 3.6.1 恆溫分析法 45 3.6.2 非恆溫分析法 46 第四章 結果與討論 50 4.1 Ge2Sb2Te5特性分析 50 4.1.1 薄膜電性分析 50 4.1.2 薄膜晶體結構分析 51 4.1.3 結晶動力學 51 4.1.4 本節結論 59 4.2 硼離子佈植於Ge2Sb2Te5特性分析 60 4.2.1 薄膜電性分析 60 4.2.2 薄膜晶體結構分析 61 4.2.3 佈植離子縱深分佈 63 4.2.4 結晶動力學 65 4.2.5 本節結論 73 4.3 矽離子佈植於Ge2Sb2Te5特性分析 75 4.3.1 薄膜電性分析 75 4.3.2 薄膜晶體結構分析 76 4.3.3 佈植離子縱深分佈 78 4.3.4 結晶動力學 81 4.3.5 本節結論 89 第五章 結論與建議 90 參考文獻. 92

    [1] Stefan Lai and Tyler Lowery, “OUM-A 180 nm Nonvolatile Memory Cell Element Technology For Stand Alone and Embedded Applications”, IEDM Tech. Dig., 2001, 803.
    [2] S. R. Ovshinsky, Phys. Rev. Lett., 21, 1968, 1450.
    [3] S. R. Ovshinsky, “Proceedings of the annual national conference on industrial research”, Chicago, Illinois, 1969, 86.
    [4] S. R. Ovshinsky et al., “Symmertrical Current Controlling Device”, US Patent, 3,271,591, 1966.
    [5] 蔡松雨,「相變化材料發展新趨勢」,工業材料雜誌,台灣,中華民國九十年,p.145
    [6] J.Feinleib et al., Appl. Phys. Lett., 18, 1971, 254.
    [7] N. Yamada, MRS Bulletin, Sep, 1996, 48.
    [8] M. Chen et al., Appl. Phys. Lett., 49, 1986, 502.
    [9] N. Kh. Abrikosov, and G. T. Danilova-Dobryakora, Inorganic Materials, 1(2), 1965, 187.
    [10] B. Legendre, and C. Hancheng, Thermochimica acta, 78, 1984, 141.
    [11] S. Bordas and M. T. Clavaguera-Mora, Thermochimica acta, 107, 1986, 239.
    [12] N. Yamada, E. Ohno, K. Nishiuchi, and N. Akahira, J. Appl. Phys., 69 (5), 1991, 2849.
    [13] E. J. Evans, J. H. Helbers, and S. R. Ovshinsky, J. Non-cryst. Solids, 2, 1970, 334.
    [14] N. Yamada, E. Ohno, N. Akahira, K.Nishiuchi, K. Nagata, and M.Takao, J. Appl. Phys., 26 Suppl. 26-4, 1987, 61.
    [15] W. Wetnic, Materials Today, 11, 2008, 20.
    [16] Wikipedia、科技政策研究與資訊中心(STPI).
    [17] Ahn S.J., Song Y.J., IEEE Internationl Electron Devices Meeting, 2004, 907.
    [18] Chen, Y.C., “Ultra-Thin Phase-Change Bridge Memory Device Using GeSb”, IEDM Tech. Dig., 2006.
    [19] S. R. Ovshinsky, J. Non-cryst. Solids, 2, 1970, 99.
    [20] Adler, D., Electronics, 1970. 43(61).
    [21] S.R. Ovshinsky, IEEE Transactions on Electron Devices, 20, 1973, 91.
    [22] CAI Yan-Fei, CHIN.PHYS.LETT. , 24, 2007, 781.
    [23] M. Wuttig, nature materials, 6, 2007, 824.
    [24] S. Hudgens, MRS Bulletin, Nov., 2004, 1.
    [25] M. Libera, and M. Chen, MRS Bulletin, Apr., 1990, 502.
    [26] J. B. Park, Journal of the Electrochemical Society, 154 (3) H139-H141, 2007.
    [27] 洪敬毅,「非揮發記憶體用銻基相變化材料開發」,國立清華大學材料科學工程所,碩士論文,中華民國九十七年
    [28] Lv, S.L., et al., “High Speed and Ultra-Low-Power Phase Change Line Cell Memory Based on SiSb Thin Films with Nanoscale Gap of Electrodes Less Than 100 nm”, Chinese Physics Letters, 25(11), 2008, 4174-4176.
    [29] Lacaita, A.L., “Phase change memories: State-of-the-art, challenges and perspectives”, Solid-State Electronics, 50(1), 2006, 24-31.
    [30] S.L. Cho, e.a., “Highly Scalable On-axis Confined Cell Structure for High Density PRAM beyond 256Mb”, IEDM Tech. Dig., 2005, 96-97.
    [31] Park, Y.S., et al., “Writing current reduction in phase change memory device withU-shaped heater (PCM-U)”, Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 45(20-23), 2006, L516-L518.
    [32] Y. H. Ha, e.a., “An Edge Contact Type Cell for Phase Change RAM Featuring Very Low Power Consumption. Sym”, VLSI Tech. Dig., 2003, 175-176.
    [33] Jeong, C.W., et al., “Highly reliable ring-type contact for high-density phase change memory”, Japanese Journal of Applied Physics Part 1- Regular Papers Brief Communications & Review Papers, 45(4B), 2006, 3233-3237
    [34] Y.J. Song, e.a., “Advanced Ring Type Contact Technology for High Density Phase Change Memory”, Proceedings of ESSDERC, 2005, 513-516.
    [35] S. Privitera, Nuclear Instruments and Methods in Physics Research B, 257, 2007, 352.
    [36] B. Liu, Z. Song, Fifth International Conference on Thin Film Physics and Applications, 5774, 2004, 287.
    [37] B. Liu, Z. Song, Materials Science and Engineering B, 119, 2005, 125.
    [38] R. De Bastiani, A.M. Piro, Nuclear Instruments and Methods in Physics Reserch B, 266, 2008, 2511.
    [39] B. Qiao, J. Feng, Applied Surface Science, 252, 2006, 8404.
    [40] Yu-Jen Huang, journal of Applied Physics, 106, 2009, 034916.
    [41] M. H. Jang, Applied Physics Letters, 95, 2009, 012102.
    [42] Johnson, W.A. and Mehl, K.F., “Transaction of American Institute of Mining and Metallurgy Engineering”, 135, 1981, 315.
    [43] Avrami, M., J. Chem. Phys., 7, 1939, 1103.
    [44] Avrami, M., J. Chem. Phys., 8,1940, 212.
    [45] Avrami, M., J. Chem. Phys., 9, 1941, 177.
    [46] 王世昌,「不同佈植與退火參數對於矽化硼分子離子佈植技術的特性影響研究」,
    國立清華大學工程與系統科學所,碩士論文,中華民國九十五年
    [47] Jr., A.U., The Bell System Technical Journal, 34, 1955, 105.
    [48] F. M. Smits, The Bell System Technical Journal, 37, 1958, 711-718.
    [49] http://mse.nthu.edu.tw/~jch/surface/report/873458/figure/1.html
    [50] Christian, J.W., Transformations in Metals and Alloys, 1975, 15-22.
    [51] Pirovano, A., et al., “Reliability study of phase-change nonvolatile memories”, IEEE Transactions on Device and Materials Reliability, 4(3), 2004, 422-427.
    [52] Kalb, J.A., F. Spaepen, and M. Wuttig, “Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording”, Journal of Applied Physics, 98(5), 2005, 054910.
    [53] Russo, U., et al., “Intrinsic data retention in nanoscaled phase-change memories - Part I: Monte Carlo model for crystallization and percolation”, IEEE Transactions on Electron Devices, 53(12), 2006, 3032-3039.
    [54] Russo, U., D. Ielmini, and A.L. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation”, IEEE Transactions on Electron Devices, 54(10), 2007, 2769-2777.
    [55] Wei, X.Q., et al., “Thickness dependent nano-crystallization in Ge2Sb2Te5 films and its effect on devices”, Japanese Journal of Applied Physics, 46(4B), 2007, 2211-2214.
    [56] Redaelli, A., et al., “A reliable technique for experimental evaluation of crystallization activation energy in PCMs”, IEEE Electron Device Letters, 29(1), 2008, 41-43.
    [57] Nonaka, T., et al., “Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase”, Thin Solid Films, 370(1-2), 2000, 258-261.
    [58] Morales-Sanchez, E., et al., “Structural, electric and kinetic parameters of ternary alloys of GeSbTe”, Thin Solid Films, 471(1-2), 2005, 243-247.
    [59] Friedrich, I., et al., “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements”, Journal of Applied Physics, 87(9), 2000, 4130-4134.
    [60] S.M. Jeong, et al., “Influence of Silicon Doping on the Properties of Sputtered Ge2Sb2Te5 Thin Film”, Japanese Journal of Applied Physics 48, 2009, 045503.
    [61] S.J. Park, et al., “Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5”, Semicond. Sci. Technol, 23, 2008, 105006.
    [62] B. D. Cullity and S. R. Stock: in Elements of X-ray Diffraction (Prentice-Hall, Upper Saddle River, NJ, 2001) p.170.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE