簡易檢索 / 詳目顯示

研究生: 安古斯
Agus Darmawan
論文名稱: Optimizing Preventive Maintenance Using Genetic Algorithm and Discrete-Event Simulation
指導教授: 許棟樑
Sheu, Daniel
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 75
中文關鍵詞: OptimizationPreventive maintenance schedulingPM windowGenetic AlgorithmDiscrete-Event Simulation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The study established the way to solve a real complex system regarding preventive maintenance scheduling problem in semiconductor manufacturing system, particularly in finding the appropriate start time of PM within PM window such that production loss due to maintenance activity can be minimized. To deal with multidimensional search space, meta-heuristics such as genetic algorithm and particle swarm optimization were introduced. Discrete event simulation was embedded into meta-heuristics algorithm for solving optimization problem.
    According MANOVA (Multivariate ANalysis Of VAriance) of five-performance indicators, -throughput rate, work in process (WIP), cycle time, equipment utilization and manpower requirement-, at the 0.05 level, it pointed out that a genetic algorithm-discrete event simulation (GA-DES) and a particle swarm optimization-discrete event simulation (PSO-DES) approach performs better than resource leveling and reference. For practical problem in this study, under objective of minimizing manpower, GA-DES perform better than PSO-DES; however under objective of maximizing throughput, there was not enough statistical evidence at the 0.05 level to conclude that GA-DES and PSO-DES were different each other.
    Contributions of this study include:
    1. Identifying the best arrangement of the start time of PM within PM window.
    2. Providing a way to optimize PM schedules for a complex system by utilizing meta-heuristics and discrete event simulation, simultaneously.


    Abstract 1 Acknowledgements 2 Table of Contents 3 List of Figures 5 List of Tables 6 CHAPTER 1: INTRODUCTION 1.1 Background 8 1.2 Problem Description 8 1.3 The Purpose of Study 9 1.4 The Expected Results - 10 1.5 Contributions - 10 1.6 Organization of Thesis - 10 CHAPTER 2: LITERATURE REVIEW 2.1 Introduction to Maintenance 11 2.2 Chemical Vapor Deposition 13 2.3 Preventive Maintenance Optimization 14 2.4 Genetic Algorithm 18 2.4.1 Representation 19 2.4.2 Fitness evaluation Function 19 2.4.3 Selection 19 2.4.4 Crossover 20 2.4.5 Mutation 20 2.5 Particle Swarm Optimization 20 2.6 Simulation 21 2.6.1 Advantages and disadvantages of simulation 22 2.6.1 FLEXSIM 23 2.7 Design of Experiment 23 2.7.1 Introduction to Factorial Design 24 2.7.2 The General Factorial Design 24 2.8 Response Surface Method 25 CHAPTER 3: RESEARCH METHODOLOGY 3.1 Problem Definition 27 3.2 Flowchart of Methodology 29 3.3 Symbol Definitions, Decision Variables and Parameters 29 3.4 PM window 30 3.5 A Genetic Algorithm-Discrete Event Simulation Approach 32 3.6 Parameters Optimization 38 CHAPTER 4: RESULT 4.1 Design of Experiment 39 4.2 The Comparison Results 41 CHAPTER 5: DISCUSSION 57 CHAPTER 6: CONCLUSION 6.1 Conclusion 58 6.2 Future Study 59 REFERENCES 60 APPENDIX 62

    1.Banks, J., Carson, J. S., & Nelson, B. L. (1996). Discrete-Event System Simulation (2nd ed.). US: Prentice-Hall.
    2.Cassady, C. R., & Kutanoglu, E. (2005). Integrating Preventive Maintenance Planning and Production Scheduling for a Single Machine. IEEE Transaction on Semiconductor Manufacturing , 54 (2), 304-309.
    3.Charles, A. S. (2003). Optimization of Preventive Maintenance Strategies in Multipurpose Batch Plant: Application to Semiconductor Manufacturing. Computer and Chemical Engineering , 449-467.
    4.Crespo Marquez, A., Gupta, J. N., & Ignizio, J. P. (2006). Improving Preventive Maintenance Scheduling in Semiconductor Fabrication Facilities. Production Planning & Control , 17, 742-754.
    5.Flexsim User's Manual, V. 4. (2008). Utah: Flexsim Software Product Inc.
    6.Garg, A., & Deshmukh, S. G. (2006). Maintenance Management: Literature Review and Directions. Journal of Quality in Maintenance Engineering , 12 (3), 205-238.
    7.Gen, M., & Cheng, R. (1997). Genetic Algorithms and Engineering Design. New York: John Wiley & Son.
    8.Gharbi, A., & Kenne, J. P. (2005). Maintenance Scheduling and Production Control of Multiple-Machine Manufacturing Systems. Computer and Industrial Engineering , 48, 693-707.
    9.Higgins, L. R., & Mobley, R. K. (2002). Maintenance Engineering Hanbook (6th ed.). New York: McGraw-Hill.
    10.Hsu, F. (2006). Establishment of Manpower Standard for Equipment Preventive Maintenance. Master Thesis, Dept. of Industrial Engineering & Engineering Management, National Tsing Hua University, Taiwan.
    11.Ilgin, M. A., & Tunali, S. (2007). Joint Optimization of Spare Part Inventory and Maintenance Policies Using Genetic Algorithms. International Journal of Advanced Manufacturing , 34, 594-604.
    12.Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. IEEE International Conference on Neural Networks, (pp. 1942-1948). Perth, Australia.
    13.Law, A. M., & Kelton, W. D. (2000). Simulation Modeling and Analysis (3rd ed.). Singapore: McGraw-Hill.
    14.Lugtigheid, D., Banjevic, D., & Jardine, A. (2005). Component Repairs: When to perform and what to do? Proceeding of the 51st Annual Reliability and Maintainability Symposium. Alexandria, VA.
    15.Montgomery, D. C. (2005). Design and Analysis of Experiment (6th ed.). New York: John Wiley & Son.
    16.Montoya, J. (2006). Manufacturing Performance Evaluation in Wafer Semiconductor Factories. International Journal of Productivity and Performance Management , 55, 300-310.
    17.Mosley, S. A., Teyner, T., & Uzsoy, R. M. (1998). Maintenance Scheduling and Staffing Policies in a Wafer Fabrication Facility. IEEE Transaction on Semiconductor Manufacturing , 11 (2), 316-323.
    18.Pham, D. T., & Karaboga, D. (2000). Intelligent Optimization Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing, and Neural Network (2nd ed.). Great Britain: Springer.
    19.Pongcharoen, P., Hicks, C., Braiden, P. M., & Stewardson, D. J. (2002). Determining Optimum Genetic Algorithm Parameters for Scheduling the Manufacturing and Assembly of Complex Products. International Journal of Production Economics , 78 (3), 311-322.
    20.Sherer, J. M. (2005). Semiconductor Industry Wafer Fab Exhaust Management. US: Taylor & Francis.
    21.Sheu, D. D., & Kuo, J. Y. (2006). A model for Preventive Maintenance Operations and Forecasting. Journal of Intelligent Manufacturing , 17 (4), 441-451.
    22.Sheu, D. D., & Wu, J. (1999). Benchmarking of Equipment Management for Taiwan's Semiconductor Fabrications Plants. Hsinchu: NSC88-2213-E-007_037.
    23.Suryadi, H., & Papageorgiou, L. G. (2004). Optimal Maintenance Planning and Crew Allocation for Multipurpose Batch Plant. International Journal of Production Research , 42 (2), 355-377.
    24.Yan, Y., & Wang, G. (2007). A Job Shop Scheduling Approach Based on Simulation Optimization. Proceeding In: IEEE International COnference, (pp. 1816-1822).
    25.Yang, T., Kuo, Y., & Cho, C. (2007). A Genetic ALgorithms Simulation Approach for Multi-attribute Combinatorial Dispatching Decision Problem. European Journal of Operational Reserach , 176, 1859-1873.
    26.Yao, X. D., Fernandez, G. E., Fu, M. C., & Marcus, S. I. (2004). Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing. IEEE Transaction on Semiconductor Manufacturing , 17 (3), 345-356.
    27.Zant, P. V. (2000). Microcip Fabrication: A Practical Guide to Semiconductor Processing (4th ed.). US: McGraw-Hill.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE