研究生: |
葉哲男 Yeh, Che-Nan |
---|---|
論文名稱: |
聚二甲基矽氧烷鐵電駐極體之開發與應用 PDMS Ferroelectrets for Transducers |
指導教授: |
蘇育全
Su, Yu-Chuan 曾繁根 Tseng, Fan-Gang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 聚二甲基矽氧烷 、鐵電駐極體 |
外文關鍵詞: | PDMS, Ferroelectret |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功的利用聚二甲基矽氧烷(PDMS)做為基材,透過均質乳化法製作多孔結構,進而以高電場促使空穴內部的空氣解離,並將極性相反的電荷植入儲存在空穴的上下表面,產生具備壓電特性的軟質高分子材料。傳統的壓電性高分子材料種類有限,加工與成形不便,與微製程相容性低,造成整合困難與應用受阻。本研究所開發的PDMS壓電材料具有製程簡單與相容性高的優點,可被廣泛應用於微機電系統中,做為機電訊號轉換的關鍵元件。在多孔結構的製作上,我們利用均質乳化法將水打散混入PDMS預聚體(pre-polymer)中,並引入介面活性劑以穩定所形成的油包水乳化結構,之後再加入固化劑並加熱使PDMS固化,此時水滴仍殘留在結構內部,最後再加熱使水滴蒸發離開PDMS結構而形成空穴。PDMS多孔結構的孔隙率可透過水含量加以控制,空穴的大小多在五微米以下。在電荷植入儲存的方面,使用數千伏特高壓脈衝在空穴內反覆放電可達到累積加成的效果,另外小空穴尺寸與高孔隙率更有助於整體電荷儲存量的提昇。製作所得的材料雛型則利用電荷放大器量測分析其壓電特性,純PDMS結構在充電後其壓電係數可達53 pC/N,若進一步在製作過程中於PDMS基材內混入諸如奈米粒子之類的異質材料,其壓電係數還可進一步提高(以加入氧化鐵為例其壓電係數可達80 pC/N以上)。透過製程整合,本研究所開發的PDMS壓電材料可望被應用於壓力感測器與環境能源擷取之類的應用。
文獻回顧
[1] J. Lekkala, R. Poramo, K. Nyholm, T. Kaikkonen, “EMF-force Sensor — A Flexible and Sensitive Electret Film for Physiological Applications”, Medical and Biological Engineering and Computing, Vol. 34, Suppl. 1, Part 1, 1996
[2] J. Kymissis, C. Kendall, J. Paradiso, and N. Gerhenfeld, “Parasitic Power Harvesting in Shoes”, Proceedings of the 2nd IEEE International Symposium on Wearable Computers, 1998, P.132
[3] Information of the company Screentec, Finland, www.screentec.com
[4] S. Bauer and F. Bauer , “Piezoelectric Polymers and Their Applications”, Physics Today, 2004
[5] G. Buchberger, R. Schw□diauer and S. Bauer, “Flexible Large Area Ferroelectret Sensors for Location Sensitive Touchpads”, Applied Physics Letters 92, 123511, 2008
[6] H.W. Lo and Y.C. Tai, “Parylene-HT-based Electrets Rotor Generator”, MEMS, Tucson, AZ, USA, 2008
[7] J. Raukola, ” A New Technology to Manufacture Polypropylene Foam Sheet and Biaxially Oriented Foamfilm”, Thesis for the degree of Doctor of Technology, Technical Research Centre of Finland, VTT Publications 361, Espoo, 1998
[8] Z. Xia, R. Gerhard-Multhaupt, A. Wedel and R. Danz, “High Surface-charge Stability of Porous Polytetrafluoroethylene Electret Films at Room and Elevated Temperatures”, J. Phys. D: Appl. Phys. 32 , 1999, P.L83-L85
[9] W. Kuenstler, Z. Xia, T. Weinhold, A. Pucher and R. Gerhard-Multhaupt, ” Piezoelectricity of Porous Polytetrafluoroethylene Single- and Multiple-Filmelectrets Containing High Charge Densities of Both Polarities”, Appl. Phys. A 70, 2000, P.5-8.
[10] J.F. Huang, X.Q. Zhang, X.F. Xia, X.W. Wang, “Piezoelectrets from Laminated Sandwiches of Porous Polytetrafluoroethylene Films and Nonporous Fluoroethylenepropylene Films”, J. Appl. Phys., Vol.103, Issue 8, 2008.
[11] M. M. Perlman, K. J. Kao and S. S. Bamji, “Silicone Resin Electrets”, J. Appl. Phys., Vol.50, No.5, 1979, P.3622-3627
[12] H.Y. Wang, T. Kobayashi, H. Saitoh, and N. Fuji, “Porous Polydimethylsiloxane Membranes for Enzyme Immobilization”, Nagaoka University of Technology, Department of Chemistry, Kamitomioka, Nagaoka, 940-21 Japan
[13] O. Dufaud, E. Favre, V. Sadtler, “Porous Elastomeric Beads from Crosslinked Emulsions”, Groupe ENSIC, INPL, 1 Rue Grandville, BP 541, 54001 Nancy, France
[14] M. Juchniewicz, D. Stadnik, K. Biesiada, A. Olszyna, M. Chudy, Z. Brzozka, A. Dybko, ” Porous Crosslinked PDMS-Microchannels Coatings”, Sensors and Actuators, B: Chemical, 126 (1), 2007, P.68-72.
[15] S. Schultz, G. Wagner, U. Kia, J. Ulrich, “High-Pressure Homogenization as a Process for Emulsion Formation”. Chem. Eng. Technol, 24, 2004, P.361-368
[16] J. Bear, Dynamics of Fluids in Porosity Media, American Elsevier Publishing Company, New York, 1972, P.15-22
[17] J.M. Meek and J.D. Craggs, “Electrical Breakdown of Gases”, Oxford:Oxford University Press, 1953
[18] F. Paschen, “Ueber die zum Funken□bergang in Luft, Wasserstoff und Kohlens□ure bei verschiedenen Drucken erforderliche Potentialdifferenz”, Ann., vol.37, 1889, P.69-96.
[19] L. H. Germer, “Electrical Breakdown between Close Electrodes in Air”, J. Appl. Phys., Vol.30, 1959, P.46-51.
[20] L. H. Germer, “Physical Processes in Contact Erosion”, J. Appl. Phys., Vol.29, 1958, P.1067-1082.
[21] J.M. Torres and R.S. Dhariwal, “Electric Field Breakdown at Micrometre Separations”, Nanotechnology 10, 1999, P.102-107
[22] R.A.C. Altafim, J.A. Giacometti, J.M. Janiszewski, ”A Novel Method for Electret Production Using Impulse Voltages”, IEEE Transactions on Dielectrics and Electrical Insulation, Estados Unidos, Vol. 27, No.4, 1992, P.739-743
[23] F. Carpi, D.D. Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, “Dielectric Elastomers as Electromechanical Transducers”, 2008, P.51-68
[24] J. M. Engel, J. Chen, N. Chen, S. Pandya, and C. Liu, "Multi-Walled Carbon Nanotube Filled Conductive Elastomers”, Materials and Application to Micro Transducers, "IEEE International Conference on MEMS, 2006
[25] G. M. Sessler and J. Hillenbrand, “Electromechanical Response of Cellular Electrets Films”, Appl. Phys. Lett. 75, 3405-7, 1999
[26] Texas Instruments Ultra-low bias current difet Operational amplifier OPA129
[27] Z.L. An, M. Zhao, J.L. Yao, Y.W. Zhang and Z.F. Xia, “Influence of Fluorination on Piezoelectric Properties of Cellular Polypropylene Ferroelectrets”, J. Phys. D: Appl. Phys. 42, 2009