簡易檢索 / 詳目顯示

研究生: 邵子安
論文名稱: 基於文字探勘的專利分析與預測
Text Mining Based Patent Analysis and Forecasting
指導教授: 張適宇
口試委員: 黃啟祐
王嘉斌
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 68
中文關鍵詞: 文字探勘專利預測專利分析
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MIMO (multiple-input and multiple-output) 技術在無線通訊領域備受關注,因為它提供了在不增加發射功率或額外頻寬的情況下,增加鏈接範圍跟數據吞吐量。可以經由在天線上散佈相同的總功率,達到陣列增益以增加頻譜效率,或是達到分集增益以增加鏈路的可靠度。因為這些特性,MIMO成為了現代無線通訊標準(IEEE 802.11n (Wi-Fi), 4G, 3GPP Long Term Evolution, WiMAX (Worldwide Interoperability for Microwave Access) 和 HSPA+)。雖然MIMO是一種現代的無線通信標準的重要組成部分,但仍然沒有人對MIMO技術進行預測或專利分析研究。專利分析是一個很好的方式來處理競爭分析與技術趨勢分析,目前有很多文章使用專利文獻進行競爭分析與技術趨勢分析,因為專利是科技知識與商業知識中重要的資源。研發人員、專家和研究人員可以利用專利分析的結果,規劃戰略評估的競爭地位,以避免侵權。本研究首先提出了一個羅吉斯回歸演算法預測MIMO技術的趨勢,然後通過使用文字探勘演算法推導出MIMO技術的專利地圖。最後提出蟻群優化(ACO)算法解決最小生成樹(MST)的問題。擴展出的MIMO能力集合可以用來幫助一間公司達到成功營銷。


    MIMO (multiple-input and multiple-output) technology has attracted attention in wireless communications because it provides significant increases in link range and data throughput without increasing transmission power or additional bandwidth. The goal can be achieved by spreading the same total transmission power over the antennas to reach an array gain that improves the spectral efficiency or to reach a diversity gain that improves the link reliability. MIMO is an important part of modern wireless communication standards (IEEE 802.11n (Wi-Fi), 4G, 3GPP Long Term Evolution, WiMAX (Worldwide Interoperability for Microwave Access) and HSPA+) because of these properties. Although MIMO is an important part of modern wireless communication standards, still no one has researching into MIMO technology forecasting or MIMO patent analysis. Patent analysis is a good way in competitive analysis and technology trend analysis. Lots of paper using patent information in competitive analysis and technology trend analysis because patents are an ample source of technical and commercial knowledge. R&D practitioners, specialists and researchers can take the results of patent analysis to plan strategies to assess competitive position and to avoid infringement. This research first proposes a logistic regression algorithm to forecast the trend of the MIMO technology and then derive patent maps of the MIMO technology by using the text mining algorithm. Finally ant colony optimization (ACO) algorithm will be proposed to solve minimum spanning tree (MST) problem. The competence set will be expanded for a MIMO design house to help a firm for achieving marketing success.

    Introduction 1 2. Literature Review 7 2.1 Patent Analysis 7 2.2 Text Mining of Patents 9 2.2.1 Structured Data Analysis 9 2.2.2 Unstructured Data Analysis 10 2.2.3 Text Mining 11 2.3 Patent Technology (Innovation) Diffusion 19 2.3.1 Patent Indicators 19 2.3.2 Patent Forecasting 21 2.3.3 Patent Forecast Methods 23 2.4 Competence Sets Expansions 25 3. Research Methods 27 3.1 Text Mining for Patent Analysis 27 3.1.1 TF-IDF 28 3.1.2 Classification 30 3.2 Patent Forecasts 30 3.2.1 Logistic Curve 31 3.3 Expansion of R&D Capability 32 3.3.1 Ant Colony Optimization 32 3.3.2 Minimum Spanning Tree 35 4. Empirical Study 37 4.1 Predicting the Diffusion of MIMO 38 4.2 Patent Map of MIMO 41 4.3 ACO based MST expansions for MIMO 46 5. Discussion 52 6. Conclusions 54

    [1] Liu, S.J. and Shyu, J., "Strategic planning for technology development with patent analysis", International Journal of Technology Management 13, 5 (1997), pp. 661--680.
    [2] Abraham, B.P. and Moitra, S.D., "Innovation assessment through patent analysis", Technovation 21, 4 (2001), pp. 245--252.
    [3] Hicks, D. and Breitzman, T. and Olivastro, D. and Hamilton, K., "The changing composition of innovative activity in the US--a portrait based on patent analysis", Research policy 30, 4 (2001), pp. 681--703.
    [4] Daim, T.U. and Rueda, G. and Martin, H. and Gerdsri, P., "Forecasting emerging technologies: Use of bibliometrics and patent analysis", Technological Forecasting and Social Change 73, 8 (2006), pp. 981--1012.
    [5] Trappey, C.V. and Wu, H.Y. and Taghaboni-Dutta, F. and Trappey, A.J.C., "Using patent data for technology forecasting: China RFID patent analysis", Advanced Engineering Informatics 25, 1 (2011), pp. 53--64.
    [6] Kuznets, S., "Inventive activity: Problems of definition and measurement", NBER (1962).
    [7] Ashton, W.B. and Sen, R.K., "Using patent information in technology business planning II", Research Technology Management 32, 6 (1988), pp. 36--42.
    [8] Ernst, H., "Patent applications and subsequent changes of performance: evidence from time-series cross-section analyses on the firm level", Research Policy 30, 1 (2001), pp. 143--157.
    [9] Lerner, J., "The importance of patent scope: an empirical analysis", The RAND Journal of Economics (1994), pp. 319--333.
    [10] Shane, S., "Technological opportunities and new firm creation", Management Science 47, 1 (2001), pp. 205--220.
    [11] Ernst, H., "Patenting strategies in the German mechanical engineering and their relationship to company performance", Technovation 15, 4 (1995) pp. 225--240.
    [12] Lee, S. and Yoon, B. and Park, Y., "An approach to discovering new technology opportunities: keyword-based patent map approach", Technovation 29 6-7 (2009) pp. 481--497.
    [13] Japan Institute of Invention and Innovation (JIII), 2002. Guide Book for Practical Use of Patent Map for Each Technology Field.
    [14] Bay, Y., "Development and applications of patent map in Korean high-tech industry". In: Proceedings of the First Asia-Pacific Conference on Patent Maps, Taipei, October 29, 2003, pp. 3--23.
    [15] Camus, C., Brancaleon, R., "Intellectual assets management: from patents to knowledge", World Patent Information 25 2 (2003), pp. 155–159.
    [16] Fattori, M., Pedrazzi, G., Turra, R., "Text mining applied to patent mapping: a practical business case", World Patent Information 25 2003, pp. 335--342.
    [17] Morris, S., DeYong, C., Wu, Z., Salman, S., Yemenu, D., 2002. DIVA: a visualization system for exploring documents databases for technology forecasting. Computers & Industrial Engineering 43 (4), 841–862.
    [18] Norton, M.J., 2001. Introductory Concepts in Information Science. ASIA, New Jersey.
    [19] Daim, T., Rueda, G., Martin, H., Gerdsri, P., 2006. Forecasting emerging technologies: use of bibliometrics and patent analysis. Technological Forecasting & Social Change 73, 981–1012.
    [20] Karki, M., 1997. Patent citation analysis: a policy analysis tool. World Patent Information 19 (4), 269–272.
    [21] Morris, A., Wu, Z., Yen, G., 2001. A SOM mapping technique for visualizing documents in a database. In: Proceedings of the IEEE International Joint Conference on Neural Networks, Washington DC, USA, July 2001.
    [22] Fayyad, U., Piatetsky-Shapiro, P., Smyth, P., Uthurusamy, R., 1996. Advances in Knowledge Discovery and Data Mining. AAI Press, CA.
    [23] Kim, Y.G., Suh, J.H., Park, S.C., 2008. Visualization of patent analysis for emerging technology. Expert Systems with Applications 34 (3), 1804–1812.
    [24] Kostoff, R., Toothman, D., Eberhart, H., Humenik, J., 2001. Text mining using database tomography and bibliometrics: a review. Technological Forecasting and Social Change 68, 223–252.
    [25] http://en.wikipedia.org/wiki/Text_mining
    [26] Weiss, S., Indurkhya, N., Zhang, T., Damerau, F., 2005. Text Mining Predictive Methods for Analyzing Unstructured Information. Springer, Berlin.
    [27] Andal, M., Oyanagi, S., Yamakazi, K., 2006. Research on text mining techniques to support patent map generation. Forum on Information Technology, 111–112.
    [28] Tseng, Y., Lin, C., Lin, Y., 2007a. Text mining techniques for patent analysis. Information Processing and Management 43 (5), 1216–1247.
    [29] Tseng, Y., Wang, Y., Lin, Y., Lin, C., Juang, D., 2007b. Patent surrogate extraction and evaluation in the context of patent mapping. Journal of Information Science 33 (6), 718–736.
    [30] Yoon, B., Park, Y., 2004. A text-mining-based patent network: analytic tool for high-technology trend. The Journal of High Technology Management Research 15 (1), 37–50.
    [31] Yoon, B., Yoon, C., Park, Y., 2002. On the development and application of a self-organizing feature map-based patent map. R&D Management 32 (4), 291–300.
    [32] Fujii, A., Iwayama, M., Kando, N., 2007. Introduction to the special issue on patent processing. Information and Process Management 43 (5), 1149–1153.
    [33] Tseng, Y., Juang, D., Wang, Y., Lin, C., 2005. Text mining for patent map analysis. In: Proceedings of IACIS Pacific 2005 Conference, May 19–21, Taipei, Taiwan, 2005, pp. 1109–1116.
    [34] Yoon, B., Phaal, R., Probert, D., 2008. Structuring technological information for technology roadmapping: data mining approach. In: Proceedings of the WSEA Conference, Cambridge, UK, February 2008.
    [35] Yeap, T., Loo, G., Pang, S., 2003. Computational patent mapping: intelligent agents for nanotechnology. In: Proceedings of the International Conference on MEMS, NANO and Smart Systems, 20–23 July 2003, 2003, pp. 274–278.
    [36] Yoon, B., Park, Y., 2004. A text-mining-based patent network: analytic tool for high-technology trend. The Journal of High Technology Management Research 15 (1), 37–50.
    [37] Schellner, I., 2002. Japanese file index classification and F-terms. World Patent Information 24, 197–201.
    [38] Krier, M., Zacca`, F., 2002. Automatic categorisation applications at the European patent office. World Patent Information 24, 187–196.
    [39] Larkey, L., 1999. A patent search and classification system. In: Proceedings of the Fourth ACM Conference, 1999, pp. 179–187.
    [40] Smith, H., 2002. Automation of patent classification. World Patent Information 24, 269–271.
    [41] Feldman, R.; Dagan, I. Knowledge Discovery in Textual Databases (KDT). In Proc. Of the 1st Int. Conf. on Knowledge Discovery & Data Mining (KDD-95), 112-117. AAAI Press, 1995.
    [42] Feldman ,R. ; Hirsh , H. Mining Associations in Text in the Presence of Background Knowledge. In Proc. of the 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD-96), 343-346. AAAI Press, 1996.
    [43] Landau, D ; Feldman, R. ; Aumann,Y. ; Fresko, M. ; Lindell, Y. ; Lipshtat, O. ; Zamir, O. TextVis: An Integrated Visual Environment for Text Mining. In Proc. of the 2nd European Symp. On Principles of Data Mining and Knowledge Discovery (PKDD '98), Lecture Notes in Artif. Intell. 1510, pp. 56- 64. Springer-Verlag, 1998.
    [44] Neto, J.L. and Santos, A.D. and Kaestner, C.A.A. and Santos, D., Document Clustering and Text Summarization. 4th International Conference on Practical Applications of Knowledge Discovery and Data Ming, London, 2000.
    [45] Hotho, A. Nu¨rnberger, A. Paaß, G., A brief survey of text mining, Zeitschrift fuer Computerlinguistik und Sprachtechnologie (GLDV-Journal for Computational Linguistics and Language Technologie) 20 (1) (2005) 19–62.
    [46] Van Rijsbergen, C. J., A non-classical logic for information retrieval. The Computer Journal, 29(6):481–485, 1986.
    [47] Robertson, S. E., The probability ranking principle. Journal of Documentation, 33:294–304, 1977.
    [48] Salton, G. and Wong, A. and Yang, C. S., A vector space model for automatic indexing. Communications of the ACM, 18(11):613–620, 1975.
    [49] Manning, C. and Schütze, H. “ Foundations of statistical natural language processing”, MIT Press, 1999
    [50] Shatkay, H. and Feldman, R., “Mining the Biomedical Literature in the Genomic Era: An Overview”, Journal of Computational Biology, 10(6), 821855, 2003
    [51] Deerwester, S. and Dumais, S.T. and Furnas, G.W. and Landauer, T.K., Indexing by latent semantic analysis. Journal of the American Society for Information Sciences, 41:391–407, 1990.
    [52] Witten, I. H. and Moffat, A. and Bell, T. C., Managing Gigabytes: Compressing and Indexing Documents and Images. Morgan Kaufmann Publishers, San Francisco, 1999.
    [53] http://en.wikipedia.org/wiki/Tf*idf
    [54] Menzies, T. and Marcus, A., Automated severity assessment of software defect reports. In ICSM ’08: Proc. 24th IEEE International Conference on Software Maintenance, pages 346–355, Sept 2008.
    [55] Zhang, Y. and Hong, J. and Cranor, L., Cantina: A content-based approach to detecting phishing web sites. In WWW, 2007.
    [56] Salton, G. and Allan, J. and Buckley, C., Automatic structuring and retrieval of large text files. Communications of the ACM, 37(2):97–108, Feb 1994.
    [57] Manning, C. D. and Sch¨utze, H., Foundations of Statistical Natural Language Processing. MIT Press, Cambridge, MA, 2001.
    [58] Mitchell, T., Machine Learning. McGraw-Hill, 1997.
    [59] Steinbach M., and Ertoz, L. and Kumar, V., Challenges of clustering high dimensional data. In L. T. Wille, editor, New Vistas in Statistical Physics – Applications in Econophysics, Bioinformatics, and Pattern Recognition. Springer-Verlag, 2003.
    [60] Hall, B. and Jaffe, A. and Trajtenberg, M., The NBER patent citation data file: Lessons, insights and methodological tools, National Bureau of Economic Research, 2001
    [61] Wang, P. and Cockburn, I. and Puterman, M., Analysis of patent data – a mixed poisson-regression-model approach, J. Bus. Econ. Stat. 16, pp.27–41, 1998
    [62] Bengisu, M. and Nekhili, R. Forecasting emerging technologies with the aid of science and technology databases, Technological Forecasting & Social Change 73, pp.835–844, 2006
    [63] Brockhoff, K. K., Indicators of firm patent activities. In Technology management: the new international language, pp. 476–481, 1991
    [64] Reitzig, M., Improving patent valuations for management purposes – Validating new indicators by analyzing application rationales. Research Policy, 33(6–7), pp.939–957, 2004
    [65] Tuomo, N., Hermans, R., & Kulvik, M., Patent citations indicating present value of the biotechnology business. Etla, 2007
    [66] Shih, M. and Liu, D. and Hsu, M. Discovering competitive intelligence by mining changes in patent trends, Expert Systems with Applications 37, pp.2882–2890, 2010
    [67] Coates, J.F., Normative forecasting, Washington, DC: United Nations University., 1994
    [68] Brockhoff, K., Forschung und Entwicklung. Planung und Kontrolle, 4th Edition, München: Oldenbourg Verlag. , 1994
    [69] Porter, A. L., A. T. Roper, T. W. Mason, F. A. Rossini and J. Banks, Forecasting and Management of Technology, New York: Wiley Publishers. , 1991
    [70] Foster, R. N., Boosting the Payoff from R&D, Research Management 25(1), pp.22–27, 1982
    [71] Ernst, H., The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry, Small Business Economics 9, pp.361–381, 1997
    [72] Meade, N., Islam, T., Technological forecasting--model selection, model stability, and combining models, Management Science, pp.1115–1130, 1998
    [73] Colorni, A. and Dorigo, M. and Maniezzo, V., “Distributed Optimization by Ant Colonies,” APPEARED IN PROCEEDINGS OF ECAL91 - EUROPEAN CONFERENCE ON ARTIFICIAL LIFE, PARIS, FRANCE, ELSEVIER PUBLISHING, pp.134-142, 1991
    [74] Dorigo, M., Optimization, Learning and Natural Algorithms, Politecnico di Milano, Italie, 1992
    [75] Dorigo, M. and Stuetzle, T., Ant Colony Optimization, MIT Press/Bradford Books, Cambridge, 2004
    [76] Dorigo, M., and Stützle, T., “The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances,” International Series in Operations Research and Management Science, Vol.57, pp.250-285, 2003
    [77] Reimann, M. and Laumanns, M. “A hybrid ACO algorithm for the Capacitated Minimum Spanning Tree Problem,” In: Proceedings of first International workshop on hybrid metaheuristics, pp.1-10, 2004
    [78] Dorigo, M. and Gambardella, L. M., “Ant colony system: A cooperative learning approach to the traveling salesman problem,” IEEE Transactions on Evolutionary Computation, Vol.1, No.1, pp.53-66, 1997
    [79] Cayley, A. “A theorem on trees,” Quarterly Journal of Mathematics, Vol.23, pp.376–378, 1889
    [80] Prim, R., “Shortest connection networks and some generalizations,” Bell System Technical Journal, Vol.36, pp.1389–1401, 1957
    [81] Kruskal, J. B., “On the shortest spanning subtree of a graph and the traveling salesman problem,” Proceedings of the American Mathematics Society, Vol.7, No.1, pp.48–50, 1956
    [82] Fredman, M. L. and Willard, D. E. “Trans-dichotomous algorithms for minimum spanning trees and shortest paths,” Journal of Computer and System Sciences, Vol.48, No.3, pp.533–551, 1994
    [83] Raid1, G. R. and Julstrom, B. A., “A Weighted Coding in a Genetic Algorithm for the Degree-Constrained Minimum Spanning Tree Problem,” In Proceedings of the 2000 ACM Symposium on Applied Computin, 2000
    [84] Broder, A., “Generating random spanning trees,” IEEE. Proc. of FOCS, pp.442–447, 1989
    [85] Neumann, F. and Witt, C., “Ant Colony Optimization and the Minimum Spanning Tree Problem,” Learning and Intelligent Optimization, Vol.5313, pp.153-166, 2008
    [86] http://www.uspto.gov/
    [87] Nicolis, C. and Nicolis, G., Dynamics of error growth in unstable systems, Physical Review A, Vol.43, pp. 5720–5723, 1991
    [88] Sancho, P., Error growth in the time-dependent logistic equation, Chaos, Solitons & Fractals, Vol.35, No.1, pp. 133–139, 2008
    [89] Lorenz, EN, Atmospheric predictability experiments with a large numerical model, Tellus, Vol.34, No.6, pp. 505–513, 1982
    [90] Suryanegara M., Miyazaki K., Technological changes in the innovation system towards 4G mobile service, Int J. Technol. Manage, 10(4), 375–394, 2010
    [91] Fellah, A., WiMAX and Broadband Wireless (Sub-11Ghz) Worldwide Market Analysis and Trends 2005-2010, 2005
    [92] Li, H.L. & Yu, P.L., Optimal competence set expansion using deduction graph. Journal of Optimization Theory and Application, 80(1), 75-91, 1994
    [93] Yu, P.L. & Zhang, D., Optimal expansion of competence set and decision support. Information System and Operational Research, 30(1), 68-84, 1992
    [94] Shi, D.S. & Yu, P.L., Optimal expansion and design of competence sets with asymmetric acquiring costs. Journal of Optimization Theory and Applications, 88(3), 643-658, 1996
    [95] Huang, J.J., Tzeng, G.H., & Ong, C.S., Optimal fuzzy multi-criteria expansion of competence sets using multi-objectives evolutionary algorithms. Expert Systems with Applications, 30(4), 739-745, 2006
    [96] Yu, P.L., Habitual Domains and Forming Winning Strategies. Hsinchu, Taiwan: NCTU Press, 2002
    [97] Yu, P. L., Forming winning strategies: An integrated theory of habitual domains. Heidelberg, Germany: Springer, 1990
    [98] Liu, B., and Abbas, H. A., and McKay, B., “Classification Rule Discovery with Ant Colony Optimization,” In IEEE/WIC International Conference on Intelligent Agent Technology, pp.83-88, 2003
    [99] Gassler, H., Frohlich, J., Kopcsa, A., Selective information on the national system of innovation as an important input for the technology management of firms. International Journal of Technology Management 11 3-4, pp. 329-342, 1996
    [100] Malerba, F., Orsenigo, L., Schumpeterian patterns of innovation are technology-specific. Research Policy 25, 451-478, 1996
    [101] Tong, X., Frame, J.D., Measuring national technological performance with patent claims data. Research Policy 23, 133–141, 1994.
    [102] Lanjouw, J.O., Patent protection in the shadow of infringement: simulation estimate of patent value. Review of Economic Studies 65 (4), 671-710, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE