研究生: |
張瑜珊 Yu-San Chang |
---|---|
論文名稱: |
清華大學開放式水池反應器之超熱中子束應用於硼中子捕獲治療之混合輻射場劑量研究 Mixed Radiation Field Dosimetry of THOR Epithermal Neutron Beam for BNCT |
指導教授: | 董傳中 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 硼中子捕獲治療 、超熱中子 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文乃利用國際上評估硼中子捕獲治療(boron neutron capture therapy,簡稱BNCT) 之混合輻射場劑量的實驗方法,應用於清華大學開放式水池反應器(Tsing Hua open-pool reactor,簡稱THOR)。在過去幾年,許多國家如美國、芬蘭、瑞典、日本等等,已將核反應器用於BNCT研究,甚至展開臨床治療。清大亦希望利用THOR朝BNCT研究發展邁進,以造福更多國內的癌症病患。在這之前,應先評估超熱中子束(epithermal neutron beam)之射束特性,以及假體劑量分佈。
BNCT治療環境為一混合輻射場:由反應器產生的超熱中子束,其中子的能量為一個範圍的分布,且會有伴隨著光子產生;此外,當中子束進入病人體內,除了與含硼藥物發生作用,亦會和人體正常組織反應。為瞭解對病人之影響,必須經由一些特殊量測方法分別評估各種輻射的劑量貢獻。本論文使用雙游離腔技術(dual ionization chamber technique) 度量得到混合輻射場中光子和快中子劑量;採用鎘差法 (cadmium difference technique) 得到熱中子通量率,再以不同之中子克馬因數(neutron kerma factor)評估熱中子對於正常組織與腫瘤造成之劑量。實驗結果可得到水假體內不同深度的各種物理劑量,包含以快中子、光子及熱中子劑量為背景,再加上含硼藥物在正常組織與腫瘤中不同硼-10濃度而得到不同的劑量。除物理劑量外,亦針對不同輻射與細胞種類的生物效應求出其相對生物效應加權劑量(relative biological effectiveness weighted dose)。根據深度-生物劑量曲線可評估中子射束在假體中的治療效益,並以治療效益觀察指標和美國麻省理工學院MITR的射束做比較。最後亦針對實驗情況以蒙地卡羅方法模擬各種劑量貢獻,再與實驗結果比較後找出兩者之差異因子,可作為將來BNCT治療計畫的參考依據。
1. Barth, R.F., et al., Boron neutron capture therapy for cancer. Cancer, 1992. 70(12): p. 2995-3007.
2. Kortesniemi, M., Solutions for clinical implantation of boron neutron capture therapy in Finland, in University of Helsinki Report series in physics HU-P-D95. 2003.
3. Turner, J.E., Atoms, radiation, and radiation protection. 2nd ed. 1995: John Wiley & Sons, Inc.
4. ENDF/B-Ⅵ neutron data form T-2 Nuclear Information Service
5. Tissue substitutes in radiation dosimetry and measurement, in ICRU Report 44
1989: Bethesda, Maryland, USA.
6. Rogus, R.D., O.K. Harling, and J.C. Yanch, Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor. Med. Phys. , 1994. 21(10): p. 1611-1624.
7. Lorcher, G.L., Biological effects and therapeutic possibilities of neutrons. Am. J. Roentgenol. Radium Ther. , 1936. 36: p. 1-13.
8. Gabel, D. and R. Moss, Boron Neutron Capture Therapy – Toward Clinical Trials of Glioma Treatment 1992.
9. 黃泰庭, 清華水池式反應器改建為硼中子捕獲治療專用核反應爐之超熱中子束最終設計分析 國立清華大學碩士論文 2003
10. 國立清華大學工程與系統科學系粒子遷移模擬實驗室。.
11. Liu, Y.H., et al. On-line Neutron Monitoring System of Epithermal Neutron Beam for BNCT at THOR. in ISNCT-12. 2006.
12. Raaijmakers, C.P., E.L. Nottelman, and B.J. Mijnheer, Phantom materials for boron neutron capture therapy. Phys Med Biol, 2000. 45(8): p. 2353-61.
13. Attix, F.H., Introduction to Radiological Physics and Radiation Dosimetry Appendix D. 1981: Wiley, New York.
14. Photon, electron, proton and neutron interaction data for body tissues, in ICRU Report 46. 1992: Bethesda, Maryland, USA.
15. Aipen, E.L. and K.A. Frankel, Biological effectiveness of recoil protons from neutrons of energy 5keV to 5MeV. Advances in Neutron Capture Therapy, ed. A.H. Soloway, R.F. Barth, and D.E. Capenter. 1993: Plenum, New York. 201-205.
16. Kosunen, A., et al., Twin Ionisation Chambers for Determinations in Phantom in an Epithermal Neutron Beam. Radiation Protection Dosimetry, 1999. 81(3): p. 187-194.
17. Attix, F.H., Introduction to Radiological Physics and Radiation Dosimetry Chapter 16. 1981: Wiley, New York.
18. Munck af Rosenschold, P.M., et al., Photon quality correction factors for ionization chambers in an epithermal neutron beam. Phys Med Biol, 2002. 47(14): p. 2397-409.
19. Neutron Dosimeter for Biology and Medicine, in ICRU Report 26. 1977.
20. An International Neutron Dosimetry Intercomparison, in ICRU Report 27. 1978.
21. Endo, S., et al., Determination of the relative neutron sensitivity of a C-CO2 ionization chamber. Phys Med Biol, 1996. 41(6): p. 1037-43.
22. Goodman, L.J. and J.J. Coyne, Wn and neutron kerma for methane-based tissue-equivalent gas. Radiat Res, 1980. 82(1): p. 13-26.
23. Ashtari, M., Biological and physical studies of boron neutron capture therapy 1982, Massachusetts Institute of Technology.
24. 國立清華大學工程與系統科學系高等核輻射度量實驗室。.
25. Standard method for determinig thermal neutron reaction and fluence rates by radioacyivation techniques, in ASTM Standard E262-86. 1987. p. 86-97.
26. Knoll, G.F., Radiation detection and measurement. 3rd ed. Chapter 19. 2000: Jhon Wiley & Sons, Inc.
27. Fairchild, R., Brookheaven National Laboratory.
28. Cember, H., Introduction to health physics. 3rd ed. Chapter 5.
29. A., C.J., C.A. D., and J. D.D., Biodistributrion of boronophenylalanine in patients with glioblastoma multiforme: born concentration correlates with tumor cellularity. Rad. Res., 1998. 149: p. 163-170.
30. Verbakel, W.F., et al., Boron concentrations in brain during boron neutron capture therapy: in vivo measurements from the phase I trial EORTC 11961 using a gamma-ray telescope. Int J Radiat Oncol Biol Phys, 2003. 55(3): p. 743-56.
31. 黃嘉薇。, 硼中子捕獲治療的生物劑量與生物效應的研究。國立清華大學碩士論文 2001。.
32. Clement, S.D., et al., Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT research reactor (MITR-II). Neutron Beam Design, Development, and Performance for Neutron Capture Therapy, ed. O.K. Harling, J.A. Bernard, and R.G. Zamenhof. 1990: Plenum. 51-69.
33. Riley, K.J., P.J. Binns, and O.K. Harling, Performance characteristics of the MIT fission converter based epithermal neutron beam. Phys Med Biol, 2003. 48(7): p. 943-58.
34. 王雅玲。硼中子捕獲治療計畫NCTPlan 應用於清華大學水池式反應器之研究。國立清華大學碩士論文 2004.
35. Hsu, F.Y., et al., Dose-rate scaling factor estimation of THOR BNCT test beam. Appl Radiat Isot, 2004. 61(5): p. 881-5.
36. 許芳裕。硼中子捕獲治療的微劑量學應用與治療計畫驗證之研究。國立清華大學博士論文 2003。.