研究生: |
鐘文駿 Chung, Wen-Chun |
---|---|
論文名稱: |
微電極點陣列架構下之數位微流體生物晶片因應生物實驗不確定性之模組佈局 Module Placement under Completion Time Uncertainty in Micro-Electrode-Dot-Array Digital Microfluidic Biochips |
指導教授: |
何宗易
Ho, Tsung-Yi |
口試委員: |
黃俊達
Huang, Juinn-Dar 陳宏明 Chen, Hung-Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 40 |
中文關鍵詞: | 數位微流體生物晶片 、微電極點陣列 、生物實驗不確定性 、模組佈局 |
外文關鍵詞: | Digital microfluidics, micro-electrode-dot-array (MEDA), uncertainty, module placement |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技日新月異地進步,數位微流體生物晶片已經逐漸地取代傳統生物實驗的實驗平台。藉著將生物實驗流當中所需的功能整合,數位微流體生物晶片可以降低人為的介入以及提高整體實驗的可自動化程度。而基於數位微流體生物晶片架構的新興晶片於近期被發表,名為微電極點陣列架構下之數位微流體生物晶片。與傳統的微流體生物晶片相比,微電極點陣列架構下之數位微流體生物晶片的每個微電極上都有感測裝置,而在傳統的微流體生物晶片上,感策裝置則是被設置在特定的位置。有了這個優勢,將有利於在微電極點陣列架構下之數位微流體生物晶片上實行即時的生物實驗偵測。然而,就我們所知,以往的生物實驗合成演算法並未在微電極點陣列架構下之數位微流體生物晶片上考慮生物實驗的不確定性,以至於即時偵測的性質並沒有被完全的發揮。在生物實驗進行當中,有些生物實驗步驟會因為生物實驗的不確定性而提早完成或是延後。如此的不確定因素將會對設計生物實驗合成之模組佈局演算法時造成影響,模組佈局乃為將生物實驗的每個步驟給予一個相對應的生物實驗模組,該實驗模組會被擺放在生物晶片上並執行所賦予的生物步驟。在這篇論文中,我們提出了第一篇在微電極點陣列架構下之數位微流體生物晶片上考慮生物不確定性之模組佈局演算法,透過我們的演算法,在考慮生物實驗不確定的情況下,整體的生物實驗執行時間將可被縮短,再者,在不超過比較對象的執行時間前提之下,我們亦能縮小生物實驗所需的晶片大小。
Digital microfluidic biochips (DMFBs) are an emerging technology that are replacing traditional laboratory procedures. With the integrated functions which are necessary for biochemical experiments, DMFBs are able to achieve automatic experiments. Recently, DMFBs based on a new architecture called micro-electrode-dot-array (MEDA) have been demonstrated. Compared with conventional DMFBs which sensors are specifically located, each microelectrode is integrated with a sensor on MEDA-based biochips. Benefiting from the advantage of MEDA-based biochips, real-time reaction-outcome detection is attainable. However, to the best of our knowledge, synthesis algorithms proposed in the literature for MEDA-based biochips do not fully utilize the real-time detection since completion-time uncertainties have not yet been considered. During the execution of a biochemical experi- ment, operations may finish earlier or delay due to variability and randomness in biochemi- cal reactions. Such uncertainties also have e↵ects when allocating modules for each fluidic operation and placing them on a biochip since a biochip with a fixed size area restricts the number and size of these modules. Thus, in this thesis, we proposed the first operation- variation-aware placement algorithm not only takes completion-time uncertainties into ac- count but also exploits real-time detection on MEDA-based biochips. Simulation results demonstrate that with the proposed approach, it leads to reduced time-to-result and mini- mizes the chip size while not exceeding completion time compared to the benchmarks.
[1] Y. Luo et al., “Design of cyberphysical digital microfluidic biochips under completion-time uncertainties in fluidic operations,” in Proceedings of ACM/IEEE Design Automation Conference, p. 44, 2013.
[2] T. Xu et al., “A droplet-manipulation method for achieving high-throughput in cross- referencing-based digital microfluidic biochips,” IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, vol. 27, no. 11, pp. 1905–1917, 2008.
[3] Z. Li et al., “Error recovery in a micro-electrode-dot-array digital microfluidic biochip?,” in Proceedings of ACM Conference on Computer-Aided Design, p. 105, 2016.
[4] G. Wang et al., “Digital microfluidic operations on micro-electrode dot array archi- tecture,” IET nanobiotechnology, vol. 5, no. 4, pp. 152–160, 2011.
[5] Y. Luo et al., “Dictionary-based error recovery in cyberphysical digital-microfluidic biochips,” in Proceedings of ACM Conference on Computer-Aided Design, pp. 369– 376, 2012.
[6] Z. Li et al., “E cient and adaptive error recovery in a micro-electrode-dot-array digi- tal microfluidic biochip,” to appear in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017.
[7] Z. Li et al., “High-level synthesis for micro-electrode-dot-array digital microfluidic biochips,” in Proceedings of ACM/IEEE Design Automation Conference, p. 146, 2016.
[8] F. Su et al., “Microfluidics-based biochips: technology issues, implementation plat- forms, and design-automation challenges,” IEEE Transactions on computer-aided de- sign of integrated circuits and systems, vol. 25, no. 2, pp. 211–223, 2006.
[9] R. B. Fair, “Digital microfluidics: is a true lab-on-a-chip possible?,” Microfluidics Nanofluidics, vol. 3, no. 3, pp. 245–281, 2007.
[10] R. Sista et al., “Development of a digital microfluidic platform for point of care test- ing,” Lab on a Chip, vol. 8, no. 12, pp. 2091–2104, 2008.
[11] Illumina (2015), “Illumina neoprep library prep system.” [Online]. Available: http://www.illumina.com/systems/neoprep-library-system.html.
[12] B. Hadwen et al., “Programmable large area digital microfluidic array with integrated droplet sensing for bioassays,” Lab on a Chip, vol. 12, no. 18, pp. 3305–3313, 2012.
[13] G.Wangetal.,“Field-programmablelab-on-a-chipbasedonmicroelectrodedotarray architecture,” IET nanobiotechnolgy, vol. 8, no. 3, pp. 163–171, 2013.
[14] K. Y.-T. Lai et al., “An intelligent digital microfluidic processor for biomedical detec- tion,” Journal of Signal Process, vol. 78, no. 1, pp. 85–93, 2015.
[15] T. Xu et al., “Integrated droplet routing in the synthesis of microfluidic biochips,” in Proceedings of ACM/IEEE Design Automation Conference, pp. 948–953, 2007.
[16] Z. Li et al., “Droplet size-aware high-level synthesis for micro-electrode-dot-array digital microfluidic biochips,” IEEE Transactions on Biomedical Circuits and Sys- tems, vol. 11, no. 3, pp. 612–626, 2017.
[17] O. Keszocze et al., “Exact routing for micro-electrode-dot-array digital microfluidic biochips,” in Proceedings of ACM/IEEE Design Automation Conference, pp. 708– 713, 2017.
[18] T.-Y. Ho et al., “Digital microfluidic biochips: A vision for functional diversity and more than moore,” in Proceedings of ACM Conference on Computer-Aided Design, pp. 578–585, 2010.
[19] M. Ibrahim et al., “Advances in design automation techniques for digital-microfluidic biochips,” Formal Modeling and Verification of Cyber-Physical Systems, pp. 190– 223, 2015.
[20] M. Pollack et al., “Electrowetting-based actuation of droplets for integrated microflu- idics,” Lab on a Chip, vol. 2, no. 2, pp. 96–101, 2002.
[21] J. Song et al., “A scaling model for electrowetting-on-dielectric microfluidic actua- tors,” Microfluidics and Nanofluidics, vol. 7, no. 1, pp. 75–89, 2009.
[22] Z. Li et al., “Built-in self-test for micro-electrode-dot-array digital microfluidic biochips,” in Proceedings of IEEE International Test Conference, pp. 1–10, 2016.
[23] E. Maftei et al., “Routing-based synthesis of digital microfluidic biochips,” Design Automation for Embedded Systems, vol. 16, no. 1, pp. 19–44, 2012.
[24] F. Su et al., “Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips,” in Proceedings of ACM Conference on Computer-Aided De- sign, pp. 825–830, 2005.
[25] Y.Luoetal.,“Designandoptimizationofacyberphysicaldigital-microfluidicbiochip for the polymerase chain reaction,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 1, pp. 29–42, 2015.