簡易檢索 / 詳目顯示

研究生: 張宗哲
Chang, Chung-Che
論文名稱: 利用微機電技術製作可撓式矽波導應用於相位調變器上
Optical Phase Shifters Using Micro-Electro-Mechanical-System Actuated Deformable Silicon Wire Waveguides
指導教授: 李明昌
Lee, Ming-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 波導微機電相位調變器光程干涉儀
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相學調變器為積體光學上一項重要的基本元件,而利用Silicon-on-insulator (SOI) wafer 的製程方式普遍被大家所採用,原因在於SOI wafer具有高的折射率對比(High Index Ratio)可以有效率的侷限(Confinement)光場並可以降低每單位元件的價格。
    本論文的研究方向系採用SOI wafer基板,利用簡單的蝕刻方式在SOI wafer上定義出可撓式矽波導(Deformable Waveguides)結構與電極區域並且使用Mack-Zehnder Interferometer設計在收光端觀察干涉現象,而兩端則採用多模干涉耦合器(Multimode Interference Coupler)進行光的分離與結合,不僅在製作上有較大的可接受誤差亦可達到約20nm的操做頻寬與光偏極化(Polarization)的不敏感性。
    量測上,利用串連6個長度為150□m可撓式矽波導在靜電力的吸引下使得矽波導整體長度上出現變化達到相位調變的目的。當外加偏壓200V且為TM偏振情況下大約可以達到0.35□□的相位變化,而元件的反應時間(Response time)約為103□s。


    An optical phase shifter for integrated optics is proposed and demonstrated in a single SOI chip. By monolithic integration of deformable silicon wire waveguides and micro-electro-mechanical- system (MEMS) actuators, the optical phase shifter for a guided wave can be realized by mechanically stretching the waveguide length using the electrostatic force. Besides, in order to realize highly compact photonic integrated circuits based on silicon photonic wires, multimode interference (MMI) couplers were introduced for performing light splitting and combing due to the advantages of wide optical bandwidth(about 20nm), polarization independence and large fabrication tolerance. In experimental measurement, the maximum phase shift of 0.35□ is attained at 200V around the wavelength 1550nm for the TM-polarized light. The dynamic actuation speed is also verified to be near 103□s for the proposed device.

    摘要 2 Abstract 3 致謝 4 第一章 緒論 7 1.1 前言 7 1.2 研究動機與目的 9 1.3 論文架構 10 第二章 理論背景 11 2.1 波導(Waveguide)原理 11 2.1.1 波導結構與種類 11 2.1.2 波導傳輸條件 12 2.2多模干涉耦合器原理(Multimode interference coupler) 20 2.2.1自我成像原理(Self-image principle) 20 2.2.2多模態波導(Multimode Waveguide) 20 2.2.3多模干涉耦合器分析 20 2.2.4導引模態(Guide mode)傳播分析 23 2.2.5一般干涉(General Interference) 25 2.2.6限制干涉(Restricted Interference) 27 2.3光彈性效應(Photoelastic Effect) 30 2.3.1通常平面應變模型(Ordinary Plane Strain Model) 32 2.3.2廣義平面應變模型(Generalized Plane Strain Model) 32 第三章 元件設計與製作流程 34 3.1元件結構設計 34 3.1.1元件主要架構 34 3.1.2多模干涉耦合器模擬 36 3.1.3相位調變器模擬 39 3.1.4光彈性效應模擬 42 3.2相位調變器元件製程 45 3.2.1元件製作流程 45 3.2.2相位調變器製程說明 47 第四章元件量測與分析 56 4.1元件光學損耗量測 56 4.1.1實驗架設與量測方法 56 4.1.2實驗數據 56 4.1.3結果與分析 58 4.2元件頻寬量測 60 4.2.1實驗架設與量測方法 60 4.2.2實驗數據 60 4.2.3結果與分析 61 4.3相位調變器訊號直流量測 62 4.3.1實驗架設與量測方法 62 4.3.2實驗數據 63 4.3.3結果與分析 64 4.4相位調變器訊號交流量測 65 4.4.1實驗架設與量測方法 65 4.4.2實驗數據 66 4.4.3結果與分析 67 第五章 結論 68 參考文獻 69

    [1]K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE, vol.70, no.5,pp.420-457, 1982.
    [2]R. T. Howe and R. S. Muller, “Polycrystalline silicon micromechanical beams,”Proc. Electrochemical Society Spring Meeting, pp.184-185, 1982.
    [3]Long-Shen Fan, Yu-Chong Tai and Richard S. Muller, “IC-processed electrostatic micromotors,” Sensors and Actuators, vol.20, no.1-2, pp41-47, 1989.
    [4]M. Sasaki, T. Hosono, S. Kumagai, “Liquid immersion angled exposure for 3D photoligthography,” Proc. of IEEE/LEOS Int. Conf. Optical MEMS and Nanophotonics, pp75-76, 2009.
    [5]R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” Journal of Micromechanics and Microengineering, 14,pp1700-1710, 2004.
    [6]S. Chung, and Y. Kim, “Design and Fabrication of a 10x10 micro-spatial Light Modulator Array for phase and Amplitude Modulation,” Sensor and Actuators, vol78, pp.63-70, 1999.
    [7] A. Higo, H. Fujita, Y. Nakano, H. Toshiyoshi, “Design and fabrication photonic MEMS waveguide modulator,” Proc. of IEEE/LEOS Int. Conf. Optical MEMS and Nanophotonics, pp173-174, 2007.
    [8]Hornbeck, L J, ”DMD projection display chip: A MEMS-based technology,” MRS Bulletin, vol.26, no.4, pp.325-327, 2001.
    [9]M. T. Tinker, J. B. Lee, “Thermo-optical photonic crystal light modulator,” Applied Physics Letters, 86, 221111, 2005.
    [10]R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE Journal of Quantum Electronics, vol.23, pp.123-129, 1987.
    [11]D. T. Fuchs, H. B. Chan, H. R. Stuart, F. Baumann, D. Greywall, M.E. Simon and A. Wong-Foy, “Monolithic integration of MEMS-based phase shifters and optical waveguides in silicon-on-insulator,” Electronics Letters, 40, pp.142-143, 2004.
    [12] T. Ikeda, Kazunori Takahashi, Yoshiaki Kanamori and Kazuhiro Hane, “Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator,” Optics Express, 18, 7035, 2010.
    [13]T. Ma, W. Zhao and J. Liu, “ A MEMS vibration sensor based on Mach Zehnder interferometers,” Proc. SPIE, 6529:2C-1, 2007.
    [14]U. Fischer, T. Zinke, J. R. Kropp, F. Arndt and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photonics Technology Letters, vol.8, pp.647-648, 1996.
    [15]P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Guided-wave optics circuits in silicon-on-insulator technology,” IEEE Proceedings-Optoelectronics, vol.143, pp.307-311, 1996.
    [16]S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtx, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature, vol.394, pp.251-253, 1998.
    [17]S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Optics Express, vol.11, pp. 2927-2939, 2003.
    [18]V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Optics Letters, vol.29, pp.1209-1211, 2004.
    [19] Okamoto K.”Fundamentals of Optical Waveguides 2/E,” Academic Press. 2006
    [20] 0. Bryngdahl, “Image formation using self-imaging techniques,” Journal of the Optical Society of America , vol.63, no.4, pp.41-19, 1973.
    [21]L.B. Soldano, and E. C. M. Pennings, “Optical multimode interference devices based on self-image principles and applications”, Journal of Lightwave
    Technology, vol.13, pp.615-627, 1995.
    [22] M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N x N multi-mode interference couplers including phase relations,” Applied Optics, vol.33, no.17, pp.3905-3911, 1994.
    [23] W. N. Ye, D. X. Xu, S. Janz, P. Cheben, A. Delage, M. J. Picard, B. Lamontagne, and N. G. Tarr, “ Stress-induced birefringence in silicon-on-insulator (SOI) waveguides”, Proc. SPIE, vol.5357, pp.57-66, 2004.
    [24] W. N. Ye, D. X. Xu, S. Janz, P. Cheben, M. J. Picard, B. Lamontagne and N. G. Tarr, ” Birefringence control using stress engineering in silicon-on-insulator (SOI)
    Waveguides,” Journal of Lightwave Technology, vol. 23, pp.1308-1318, 2005.
    [25]M. Huang, “ The influence of light propagation direction on the stress-induced polarization dependence of silicon waveguides,” IEEE Photonics Technology Letters, vol.18, pp.1314-1316, 2006.
    [26]Yoshitery Amemiya, Yuichiro Tanushi, Tomohiro Tokunaga and Shin Yokoyama, ”Photoelastic effect in silicon ring resonators,” Japanses Journal of Applied Physics, vol.47, no.4, pp.2910-2914, 2008.
    [27] R. K. Gupta, “Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems (MEMS)”, Ph.D.dissertation, MIT, Cambridge, pp.10–27, 1997.
    [28]S. Pamidighantam, R. Puers, K. Baert, and A. C. Tilmans, “ Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions,” Journal of Micromechanics and Microengineering , vol.12, pp.458-464, 2002.
    [29] S. K. De and N. R. Aluru, “Full-Lagrangian schemes for dynamic analysis of electrostatic MEMS”, Journal of Microelectronic Systems, vol.13, no.5, pp.737 - 758, 2004.
    [30]H. Sadeghian and G. Rezazade, “The influence of stress gradient on the pull-in phenomena of microelectromechanical switches,” Journal of Physics: Conference Series, vol.34, pp.1117-1122, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE