研究生: |
吳昇勳 Wu, Sheng-Hsun |
---|---|
論文名稱: |
奈米角錐與奈米金屬間隙結構之設計製造及分析-應用於增強蛋白質分子螢光訊號 The Design, Fabrication and Analyze of Nanocone and Nanometallic Gap Structures: Applying for the Enhancement of Protein Fluorescence Signal |
指導教授: |
曾繁根
Tseng, Fan-Gang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 奈米金屬間隙結構 、分子級掀離 、奈米角錐結構 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雖然在過去的數十年間關於單分子研究的多項技術已經發展完成,然而獲得單分子反應事件的方法多半還需倚靠試片樣品濃度的控制以及透過大量分子反應事件以得知結果。
本論文的宗旨便是在於提供一個新穎的單分子反應偵測平台讓單分子能固定在獨立的位置上,以解決先前技術當中因為利用大量生物分子反應而讓真正單分子反應的過程含糊不清的問題。且此平台可提供一大面積陣列型式的結構,以大大提升單分子間的反應機率,讓反應能以平行且高產量的方式進行。
為了得到上述的單分子反應偵測平台,初步設計為利用4-10奈米的奈米金球來固定單一的酵素分子,而此些奈米金球是固定在六角形規則排列的獨立透明奈米圓錐的尖端。雷射光透過外層鋁膜的一維波導可在奈米金球表面產生表面電漿共振以獲得螢光訊號的激發。
但由於雷射光在傳導途中容易產生透光或散射,能量不易集中至奈米金球表面而導致螢光發光強度極為微弱,因此後續設計為在奈米金球周圍覆蓋銀薄膜作為表面電漿共振能量增強的來源,並利用分子級掀離技術在奈米金球與銀薄膜之間形成5-10奈米的間距,使得表面電漿共振能量的傳遞效率達到最大值。如此一來,激發出的螢光強度及持續時間將有顯著成長,將有效增加單分子檢測之效率及可信度。
1. 陳怡蓉,「奈米球微影術應用於建構奈米等級之二維金球陣列」,國立清華大
學奈米工程與微系統研究所,碩士論文,中華民國九十七年
2 國科會奈米國家型計畫Research Project
3 J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered magnetic nanostructures: fabrication and properties,” Journal of Magnetism and Magnetic Materials, vol. 256, pp. 449-501, 2003.
4 M. Alexe, C. Harnagea, and D. Hesse,”Non-conventional micro- and nanopatterning techniques for electroceramics,” Journal of Electroceramics, vol. 12, pp. 69-88, 2004.
5 G. M. Whitesides and J. C. Love, “The art of building small - Researchers are discovering cheap, efficient ways to make structures only a few billionths of a meter across,” Scientific American, vol. 285, pp. 38-47, 2001.
6 鄭瑞庭、蔡宏營、林熙翔、蘇建彰, and 陳建洋, 機械工業雜誌, vol. 245 期, pp. 106-116.
7 K. Bessho, Y. Iwasaki, and S. Hashimoto, “ Nanoscale magnetic mounds fabricated using a scanning probe microscope,” Ieee Transactions on Magnetics, vol. 32, pp. 4443-4447, 1996.
8 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography”, The Journal of Vacuum Science and Technology B, vol. 14 ,pp. 4129-4133, 1996.
9 X. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques”, Journal of Nanoscience and Nanotechnology, vol. 6, pp. 1920-1934, 2006.
10 M.Alexe, C. Harnagea, and D. Hesse,“Non-conventional micro- and nanopatterning techniques for electroceramics”, Journal of Electroceramics, vol. 12, pp. 69-88, 2004
11 G.Zhang, D. Y. Wang, and H. Mohwald, “Ordered binary arrays of Au nanoparticles derived from colloidal lithography”, Nano Letters, vol. 7, pp. 127-132, 2007.
12 S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, and H. K. Yu, “Nanomachining by colloidal lithography”, Small, vol. 2, pp. 458-475, 2006.
13 Seung-Man Yang, Se Gyu Jang, Dae-Geun Choi, Sarah Kim, and Hyung Kyun
Yu, “Nanomachining by Colloidal Lithography-review”, Small, vol. 2, No.4, pp.
458-475, 2006.
14 Henri Janseny, Han Gardeniers, Meint de Boer, Miko Elwenspoek and J an Fluitman, “A survey on the reactive ion etching of silicon in micromachine-review”,J. Micromech. Microeng, vol.6, pp. 14-28, 1995
15 Mogab C J , J. Electrochem. Soc, 124 ,1262,1977
16 Tachi S et al ,Appl. Phys. Lett. ,52, 616,1988
17 D’Agostino R et al ,J. Appl. Phys., 52 ,1259,1981
18 Coburn J W and Winters H F ,J. Vac. Sci. Technol., 16, 391,1979
19 Banqiu Wu, “ Photomask plasma etching: A review”,J. Vac. Sci. Technol. B, vol.24(1), pp. 1-15, 2006
20 Bodo Fuhrmann, Hartmut S. Leipner, and Hans-Reiner Ho1che, “Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy”,Nano Letters, vol.5, No.12, pp. 2524-2527, 2005
21 Benzhong Wanga, Wei Zhaoa, Ao Chenb, Soo-Jin Chuaa, “Formation of nanoimprinting mould through use of nanosphere lithography”,Journal of crystal growth, vol.288, pp. 200-204, 2006
22 Gang Logan Liu, Yi-Tao Long, Yeonho Choi1, Taewook Kang1 and Luke P. Lee, “Quantized Plasmon Quenching Dips Nanospectroscopy via Plasmon Resonance Energy Transfer”
23 C. F. Bohren & D. R. Huffman, “Absorption and Scattering of Light by Small
Particles”, Wiley, pp. 335-336 ,1998
24 M. Moskovits, Rev. Mod. Phys., 57, 783,1985. P. Mulvaney, Langmuir, 12, 788,
1996. D. A. Schultz, Curr. Opin. Biotechnol, 14, 13, 2003.
25 J. R. Lombardi, R. L. Birke, T. H. Lu & J. Xu, J. Chem. Phys. 84, 4174, 1986
26 S. Nie & S. R. Emory, Science, 275, 1102, 1997.
27 M. Futamata, Y. Maruyama, & M. Ishikawa, J. Phys. Chem. B ,108, 13119,
2004.
28 P. Das, & H. Metiu, J. Phys. Chem. ,89, 4680, 1985
29 Takami Hino, Hirofumi Tanaka, Hiroaki Ozawa, Yuko Iida, Takuji Ogawa, “A
New utilization of organic molecules for nanofabrication using the molecular
Ruler method”,Colloids and Surfaces A: Physicochem. Eng. Aspects, vol.313-314,
pp. 369-372, 2008
30 莊尚餘, 陳學禮, 鄭旭君, 王鉦元, 朱鐵吉, 林俊宏,奈米通訊, vol.第十二卷, pp. 8-15.
31 Ming-Chang M. Lee and Ming C. Wu, “Thermal Annealing in Hydrogen for 3-D Profile Transformation on Silicon-on-Insulator and Sidewall Roughness Reduction”,JOURNAL OF MICROELECTROMECHANIC- AL SYSTEMS, vol. 15, No. 2, 2006