研究生: |
李佳馨 Li, Jia-Xin |
---|---|
論文名稱: |
以新興凡德瓦爾鐵磁材料操縱過渡金屬二硫化物的能谷自由度 Manipulating the Valley Degree of Freedom of Transition Metal Dichalcogenides using Emerging Van der Waals Magnets |
指導教授: |
劉昌樺
Liu, Chang-Hua |
口試委員: |
陳宣燁
Chen, Shiuan-Yeh 張祐嘉 Chang, You-Chia 葉昭輝 Yeh, Chao-Hui 李騏亘 Lee, Chi-Sen |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 二維材料 、異質結構 、過渡金屬二硫化物 、凡德瓦爾磁鐵 、能谷元件 |
外文關鍵詞: | Two-dimensional materials, Heterostructures, Transition metal dichalcogenides, van der Waals magnets, Valleytronics |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著數據傳輸與高性能計算需求的快速增長,電晶體的微型化已接近物理極限,促使研究人員探索替代材料與元件架構,以延續摩爾定律的發展。過渡金屬二硫化物(TMDs)因其獨特的能谷自由度以及自旋-能谷耦合特性,成為下一代能谷電子學元件應用的潛在材料。然而,過去使用Ga(Mn)As與鐵鎳合金等鐵磁材料與TMDs整合以實現自旋注入的嘗試面臨諸多挑戰。這些方法通常需要高強度的外加磁場或複雜的材料生長過程,限制了其實際應用,進一步凸顯開發具備高效自旋注入且製程簡單的新型材料與物理架構的必要性。
本研究論文開發了一種基於凡德瓦爾異質結構的能谷電子元件,結合了單層WSe2、二維鐵磁材料Fe3GeTe2(FGT)以及超薄六方氮化硼(hBN)。透過施加偏壓,成功從FGT/hBN鐵磁穿隧電極向WSe2注入自旋極化的電洞,從而在±K谷之間產生能谷極化現象。這一現象經由圓偏振依賴的電致發光(EL)測量得到實驗驗證,並通過密度泛函理論(DFT)計算提供理論支持。此外,在外加磁場的條件下,EL的圓偏振性顯示出與FGT磁滯一致的磁滯曲線,該現象經由反射磁圓二色性(RMCD)進行驗證。研究結果表明,透過調控FGT的磁化方向,可實現可逆的自旋極化,展現其在精確自旋操控上的潛力。
FGT的高自旋極化與卓越磁性特性結合hBN的自旋保護特性,使該元件能夠實現高效自旋注入,同時避免了傳統異質結構中常見的晶格失配問題。而凡德瓦爾材料的應用則大幅簡化製程步驟,為構建高效且實用的能谷電子元件提供了一種全新的解決方案。
The rapid growth in data transmission and high-performance computing demands has pushed transistor miniaturization to its physical limits, prompting the exploration of alternative materials and architectures to extend Moore's Law. Transition metal dichalcogenides (TMDs), with their unique valley degree of freedom and strong spin-valley coupling, have emerged as promising candidates for next-generation valleytronic devices. However, previous efforts to integrate ferromagnetic materials, such as Ga(Mn)As and permalloy, with TMDs for spin injection have faced significant challenges. These approaches often require either strong external magnetic fields or complex epitaxial growth processes, thereby constraining their applicability. This highlights the need for alternative materials and device architectures that enable efficient spin injection with simplified fabrication.
In this study, we report the development of a van der Waals (vdW) heterostructure valleytronic device, combining monolayer WSe2, the two-dimensional ferromagnetic material Fe3GeTe2 (FGT), and an ultra-thin hexagonal boron nitride (hBN) spin tunnel barrier. By applying a bias voltage, spin-polarized holes are successfully injected from the FGT/hBN contact into WSe2, resulting in a population imbalance between the K and -K valleys. The valley polarization was confirmed through helicity-dependent electroluminescence (EL) measurements and supported by density functional theory (DFT) calculations. Moreover, under an external magnetic field, the EL helicity demonstrates a hysteresis loop consistent with the magnetic hysteresis of FGT, as characterized by reflective magnetic circular dichroism (RMCD). These results demonstrate the reversible spin helicity achieved by tuning the magnetization direction of FGT, underscoring its potential for precise spin manipulation.
The combination of FGT's high spin polarization and magnetic properties with the spin-preserving characteristics of hBN enables efficient spin injection while avoiding the lattice mismatch issues commonly encountered in traditional heterostructures. Furthermore, the application of van der Waals materials significantly simplifies fabrication processes, offering a novel solution for constructing efficient and practical valleytronic devices.
1. Schaller, R.R., Moore's law: past, present and future. IEEE Spectrum, 1997. 34(6): p. 52-59.
2. Lundstrom, M.S. and M.A. Alam, Moore’s law: the journey ahead. Science, 2022. 378(6621): p. 722-723.
3. Wu, J., et al., A Nanotechnology Enhancement to Moore's Law. Applied Computational Intelligence and Soft Computing, 2013. 2013(1): p. 426962.
4. Mack, C.A., Fifty years of Moore's law. IEEE Transactions on Semiconductor Manufacturing, 2011. 24(2): p. 202-207.
5. Waldrop, M.M., The chips are down for Moore's law. Nature, 2016. 530: p. 144-147.
6. Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53.
7. Agha, F.N.H., Y.H. Naif, and M.N. Shakib, Review of nanosheet transistors technology. Tikrit Journal of Engineering Sciences, 2021. 28(1): p. 40-48.
8. arslanAstral. Moore's Law: Moore's Prediction vs Actual Transistor Count. arslanAstral Website, 2021. [Accessed 2024 Nov 13]. Available from: https://reurl.cc/Mjbx4p.
9. Lundstrom, M., Moore's law forever? Science, 2003. 299(5604): p. 210-211.
10. Chojecki, P. What is Moore’s Law? Is it dead? BuiltIn, 2023. [Accessed 2024 Nov 13]. Available from: https://builtin.com/hardware/moores-law.
11. Liu, Y., et al., Valleytronics in transition metal dichalcogenides materials. Nano Research, 2019. 12: p. 2695-2711.
12. Bao, Q. and H.Y. Hoh, 2D Materials for Photonic and Optoelectronic Applications. Woodhead Publishing, 2019.
13. Sham, L., et al., Valley-Valley Splitting in Inversion Layers on a High-Index Surface of Silicon. Physical Review Letters, 1978. 40(7): p. 472.
14. J. Ohkawa, F. and Y. Uemura, Theory of valley splitting in an N-channel (100) inversion layer of Si III. Enhancement of splittings by many-body effects. Journal of the Physical Society of Japan, 1977. 43(3): p. 925-932.
15. Bloss, W., L. Sham, and V. Vinter, Interaction-induced transition at low densities in silicon inversion layer. Physical Review Letters, 1979. 43(20): p. 1529.
16. Kaplyanskii, A., et al., Selective optical valley pumping in silicon and germanium. Solid State Communications, 1976. 20(1): p. 27-29.
17. Ezawa, M., Monolayer topological insulators: silicene, germanene, and stanene. Journal of the Physical Society of Japan, 2015. 84(12): p. 121003.
18. Takashina, K., et al., Valley polarization in Si (100) at zero magnetic field. Physical Review Letters, 2006. 96(23): p. 236801.
19. Giorgioni, A., et al., Valley-dependent spin polarization and long-lived electron spins in germanium. Applied Physics Letters, 2014. 105(15).
20. Weber, B., et al., Spin-orbit coupling in silicon for electrons bound to donors. npj Quantum Information, 2018. 4(61).
21. Liu, L., Effects of spin-orbit coupling in Si and Ge. Physical Review, 1962. 126(4): p. 1317.
22. Wang, G., et al., Spin–orbit engineering in transition metal dichalcogenide alloy monolayers. Nature Communications, 2015. 6(1): p. 10110.
23. Vitale, S.A., et al., Valleytronics: opportunities, challenges, and paths forward. Small, 2018. 14(38): p. 1801483.
24. Xu, X., et al., Spin and pseudospins in layered transition metal dichalcogenides. Nature Physics, 2014. 10(5): p. 343-350.
25. Xiao, D., et al., Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 2012. 108(19): p. 196802.
26. Mak, K.F., D. Xiao, and J. Shan, Light–valley interactions in 2D Semiconductors. Nature Photonics, 2018. 12(8): p. 451-460.
27. Li, X. and H. Zhu, Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomics, 2015. 1(1): p. 33-44.
28. Sayers, C., Charge density wave phenomena in trigonal transition metal dichalcogenides. PhD thesis, University of Bath, 2020.
29. Schaibley, J.R., et al., Valleytronics in 2D materials. Nature Reviews Materials, 2016. 1(11): p. 1-15.
30. Ghatak, K., et al., Controlled edge dependent stacking of WS2-WS2 Homo- and WS2-WSe2 Hetero-structures: A Computational Study. Scientific Reports, 2020. 10(1): p. 1648.
31. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
32. Splendiani, A., et al., Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010. 10(4): p. 1271-1275.
33. Du, L., et al., Strongly enhanced exciton-phonon coupling in two-dimensional WSe2. Physical Review B, 2018. 97(23): p. 235145.
34. Cao, T., et al., Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications, 2012. 3(1): p. 887.
35. Mueller, T. and E. Malic, Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Materials and Applications, 2018. 2(1): p. 29.
36. Jo, S., et al., Mono- and bilayer WS2 light-emitting transistors. Nano Letters, 2014. 14(4): p. 2019-2025.
37. Ross, J.S., et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotechnology, 2014. 9(4): p. 268-272.
38. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 2013. 8(7): p. 497-501.
39. Tsai, M.-L., et al., Monolayer MoS2 heterojunction solar cells. ACS Nano, 2014. 8(8): p. 8317-8322.
40. Zeng, H., et al., Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 2012. 7(8): p. 490-493.
41. Mak, K.F., et al., Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 2012. 7(8): p. 494-498.
42. Omkaram, I., Y.K. Hong, and S. Kim, Transition Metal Dichalcogenide Photodetectors. Two-Dimensional Materials for Photodetector, edited by Nayak, P.K., IntechOpen, Rijeka, Croatia, 2017, Chapter 2.
43. Zhao, W., et al., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano, 2013. 7(1): p. 791-797.
44. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012. 7(11): p. 699-712.
45. Wikipedia contributors. Transition metal dichalcogenide monolayers. Wikipedia, 2024. [Accessed 2024 Nov 14]. Available from: https://en.wikipedia.org/w/index.php?title=Transition_metal_dichalcogenide_monolayers&oldid=1255921140.
46. Zhu, Z.Y., Y.C. Cheng, and U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Physical Review B, 2011. 84(15): p. 153402.
47. Kormányos, A., et al., Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects. Physical Review B, 2013. 88(4): p. 045416.
48. Kośmider, K., J.W. González, and J. Fernández-Rossier, Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Physical Review B, 2013. 88(24): p. 245436.
49. Marinov, K., et al., Resolving the spin splitting in the conduction band of monolayer MoS2. Nature Communications, 2017. 8(1): p. 1938.
50. Zhang, Y., et al., On valence-band splitting in layered MoS2. ACS Nano, 2015. 9(8): p. 8514-8519.
51. Liu, G.-B., et al., Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chemical Society Reviews, 2015. 44(9): p. 2643-2663.
52. Dey, P., et al., Gate-controlled spin–valley locking of resident carriers in WSe2 monolayers. Physical Review Letters, 2017. 119(13): p. 137401.
53. Mai, C., et al., Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Letters, 2014. 14(1): p. 202-206.
54. Luo, C., et al., Valleytronics in two-dimensional magnetic materials. Journal of Physics: Materials, 2024. 7(2): p. 022006.
55. Ye, Z., D. Sun, and T.F. Heinz, Optical manipulation of valley pseudospin. Nature Physics, 2017. 13(1): p. 26-29.
56. Jones, A.M., et al., Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotechnology, 2013. 8(9): p. 634-638.
57. Mak, K.F., et al., The valley Hall effect in MoS2 transistors. Science, 2014. 344(6191): p. 1489-1492.
58. Onga, M., et al., Exciton Hall effect in monolayer MoS2. Nature Materials, 2017. 16(12): p. 1193-1197.
59. Jung, E., et al., Unusually large exciton binding energy in multilayered 2H-MoTe2. Scientific Reports, 2022. 12(1): p. 4543.
60. Van der Donck, M., M. Zarenia, and F. Peeters, Excitons, trions, and biexcitons in transition-metal dichalcogenides: magnetic-field dependence. Physical Review B, 2018. 97(19): p. 195408.
61. Chen, X., et al., Excitonic Complexes in Two-Dimensional Transition Metal Dichalcogenides. Nature Communications, 2023. 14(1): p. 8233.
62. Selig, M., et al., Ultrafast dynamics in monolayer transition metal dichalcogenides: interplay of dark excitons, phonons, and intervalley exchange. Physical Review Research, 2019. 1(2): p. 022007.
63. Mak, K.F., et al., Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010. 105(13): p. 136805.
64. You, Y., et al., Observation of biexcitons in monolayer WSe2. Nature Physics, 2015. 11(6): p. 477-481.
65. Pei, J., et al., Excited state biexcitons in atomically thin MoSe2. ACS Nano, 2017. 11(7): p. 7468-7475.
66. Szyniszewski, M., et al., Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations. Physical Review B, 2017. 95(8): p. 081301.
67. Mostaani, E., et al., Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides. Physical Review B, 2017. 96(7): p. 075431.
68. Mak, K.F., et al., Tightly bound trions in monolayer MoS2. Nature Materials, 2013. 12(3): p. 207-211.
69. Ross, J.S., et al., Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Communications, 2013. 4(1): p. 1474.
70. Moody, G., et al., Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nature Communications, 2015. 6(1): p. 8315.
71. Zhou, B.T., et al., Spin-orbit coupling induced valley Hall effects in transition-metal dichalcogenides. Communications Physics, 2019. 2(1): p. 26.
72. Li, Y.-M., et al., Light-induced exciton spin Hall effect in van der Waals heterostructures. Physical Review Letters, 2015. 115(16): p. 166804.
73. Chervy, T., et al., Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons. ACS Photonics, 2018. 5(4): p. 1281-1287.
74. Gong, S.-H., et al., Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science, 2018. 359(6374): p. 443-447.
75. Sun, L., et al., Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nature Photonics, 2019. 13(3): p. 180-184.
76. Li, L., et al., Room-temperature valleytronic transistor. Nature Nanotechnology, 2020. 15(9): p. 743-749.
77. Ye, Y., et al., Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nature Nanotechnology, 2016. 11(7): p. 598-602.
78. Sanchez, O.L., et al., Valley Polarization by Spin Injection in a Light-Emitting van der Waals Heterojunction. Nano Letters, 2016. 16(9): p. 5792-5797.
79. Heisenberg, W., Zur Theorie des Ferromagnetismus. Zeitschrift für Physik, 1928. 49: p. 619–636.
80. Cortie, D.L., et al., Two-dimensional magnets: Forgotten history and recent progress towards spintronic applications. Advanced Functional Materials, 2020. 30(18): p. 1901414.
81. Onsager, L., Crystal statistics. I. A two-dimensional model with an order–disorder transition. Physical Review, 1944. 65(3-4): p. 117.
82. Mermin, N.D. and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Physical Review Letters, 1966. 17(22): p. 1133.
83. Xi, X., et al., Strongly enhanced charge-density-wave order in monolayer NbSe2. Nature Nanotechnology, 2015. 10(9): p. 765-769.
84. Kim, K.K., et al., Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Letters, 2012. 12(1): p. 161-166.
85. Boix‐Constant, C., et al., Van der Waals heterostructures based on atomically‐thin superconductors. Advanced Electronic Materials, 2021. 7(7): p. 2000987.
86. Fatemi, V., et al., Electrically tunable low-density superconductivity in a monolayer topological insulator. Science, 2018. 362(6417): p. 926-929.
87. Lee, J.-U., et al., Ising-type magnetic ordering in atomically thin FePS3. Nano Letters, 2016. 16(12): p. 7433-7438.
88. Wang, X., et al., Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Materials, 2016. 3(3): p. 031009.
89. Dal Din, A., et al., Antiferromagnetic spintronics and beyond. npj Spintronics, 2024. 2(1): p. 25.
90. Huang, B., et al., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017. 546(7657): p. 270-273.
91. Gong, C., et al., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017. 546(7657): p. 265-269.
92. Fei, Z., et al., Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nature Materials, 2018. 17(9): p. 778-782.
93. Papavasileiou, A.V., et al., Ferromagnetic Elements in Two-Dimensional Materials: 2D Magnets and Beyond. Advanced Functional Materials, 2024. 34(2): p. 2309046.
94. Burch, K.S., D. Mandrus, and J.-G. Park, Magnetism in two-dimensional van der Waals materials. Nature, 2018. 563(7729): p. 47-52.
95. Ajayan, P., P. Kim, and K. Banerjee, Two-dimensional van der Waals materials. Physics Today, 2016. 69(9): p. 38-44.
96. Liu, Y., et al., Van der Waals heterostructures and devices. Nature Reviews Materials, 2016. 1(9): p. 1-17.
97. Wang, Q.H., et al., The magnetic genome of two-dimensional van der Waals materials. ACS Nano, 2022. 16(5): p. 6960-7079.
98. Deng, Y., et al., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018. 563(7729): p. 94-99.
99. Bi, X., et al., Controlling exchange interactions and emergent magnetic phenomena in layered 3d-orbital ferromagnets. Advanced Physics Research, 2023. 2(6): p. 2200106.
100. Zhang, K., et al., Gigantic current control of coercive field and magnetic memory based on nanometer‐thin ferromagnetic van der Waals Fe3GeTe2. Advanced Materials, 2021. 33(4): p. 2004110.
101. Tan, C., et al., Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nature Communications, 2018. 9(1): p. 1554.
102. Min, K.-H., et al., Tunable spin injection and detection across a van der Waals interface. Nature Materials, 2022. 21(10): p. 1144-1149.
103. Zhang, S., et al., Quenching of magnetoresistance by hot electrons in magnetic tunnel junctions. Physical Review Letters, 1997. 79(19): p. 3744.
104. Jansen, R. and J. Moodera, Influence of barrier impurities on the magnetoresistance in ferromagnetic tunnel junctions. Journal of Applied Physics, 1998. 83(11): p. 6682-6684.
105. Zhang, S., Spin Hall effect in the presence of spin diffusion. Physical Review Letters, 2000. 85(2): p. 393.
106. Heiliger, C., et al., Influence of the interface structure on the bias dependence of tunneling magnetoresistance. Physical Review B, 2005. 72(18): p. 180406.
107. Vera Marún, I., et al., Tunneling magnetoresistance with positive and negative sign in La0.67Sr0.33MnO3/SrTiO3/Co junctions. Physical Review B, 2007. 76(6): p. 064426.
108. Jariwala, D., T.J. Marks, and M.C. Hersam, Mixed-dimensional van der Waals heterostructures. Nature Materials, 2017. 16(2): p. 170-181.
109. Koma, A., Van der Waals epitaxy for highly lattice-mismatched systems. Journal of Crystal Growth, 1999. 201: p. 236-241.
110. Yankowitz, M., et al., van der Waals heterostructures combining graphene and hexagonal boron nitride. Nature Reviews Physics, 2019. 1(2): p. 112-125.
111. Wang, Z., et al., Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Letters, 2018. 18(7): p. 4303-4308.
112. Albarakati, S., et al., Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer heterostructures. Science Advances, 2019. 5(7): p. eaaw0409.
113. Lin, H., et al., Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Applied Materials & Interfaces, 2020. 12(39): p. 43921-43926.
114. Dolui, K., et al., Efficient spin injection and giant magnetoresistance in Fe/MoS2/Fe junctions. Physical Review B, 2014. 90(4): p. 041401.
115. Yang, H., et al., Two-dimensional materials prospects for non-volatile spintronic memories. Nature, 2022. 606(7915): p. 663-673.
116. Alghamdi, M., et al., Highly efficient spin–orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Letters, 2019. 19(7): p. 4400-4405.
117. Li, J.-X., et al., Electric control of valley polarization in monolayer WSe2 using a van der Waals magnet. Nature Nanotechnology, 2022. 17(7): p. 721-728.
118. Cai, Z., et al., Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chemical Reviews, 2018. 118(13): p. 6091-6133.
119. Dong, J., et al., The epitaxy of 2D materials growth. Nature Communications, 2020. 11(1): p. 5862.
120. Yi, M. and Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A, 2015. 3(22): p. 11700-11715.
121. Huang, Y., et al., Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020. 11(1): p. 2453.
122. Li, H., et al., Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano, 2013. 7(11): p. 10344-10353.
123. Lei, J., et al., A facile method for precise layer number identification of two-dimensional materials through optical images. Optics Communications, 2019. 440: p. 21-25.
124. McCreary, K.M., et al., Understanding variations in circularly polarized photoluminescence in monolayer transition metal dichalcogenides. ACS Nano, 2017. 11(8): p. 7988-7994.
125. Nam, H., et al., MoS2 transistors fabricated via plasma-assisted nanoprinting of few-layer MoS2 flakes into large-area arrays. ACS Nano, 2013. 7(7): p. 5870-5881.
126. Yang, H., et al., Highly scalable synthesis of MoS2 thin films with precise thickness control via polymer-assisted deposition. Chemistry of Materials, 2017. 29(14): p. 5772-5776.
127. Liu, H., et al., Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers. ACS Nano, 2014. 8(1): p. 1031-1038.
128. Cao, Y., et al., Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018. 556(7699): p. 43-50.
129. Huang, S., et al., Topologically protected helical states in minimally twisted bilayer graphene. Physical Review Letters, 2018. 121(3): p. 037702.
130. Tran, K., et al., Evidence for moiré excitons in van der Waals heterostructures. Nature, 2019. 567(7746): p. 71-75.
131. He, F., et al., Moiré patterns in 2D materials: a review. ACS Nano, 2021. 15(4): p. 5944-5958.
132. Kuzmina, A., et al., Resonant light emission from graphene/hexagonal boron nitride/graphene tunnel junctions. Nano Letters, 2021. 21(19): p. 8332-8339.
133. Huang, J., T.B. Hoang, and M.H. Mikkelsen, Probing the origin of excitonic states in monolayer WSe2. Scientific Reports, 2016. 6(1): p. 22414.
134. Wang, G., et al., Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Physical Review B, 2014. 90(7): p. 075413.
135. Refaely-Abramson, S., et al., Defect-induced modification of low-lying excitons and valley selectivity in monolayer transition metal dichalcogenides. Physical Review Letters, 2018. 121(16): p. 167402.
136. Zhang, S., et al., Defect structure of localized excitons in a WSe2 monolayer. Physical Review Letters, 2017. 119(4): p. 046101.
137. Srivastava, A., et al., Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nature Physics, 2015. 11(2): p. 141-147.
138. Stier, A.V., et al., Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nature Communications, 2016. 7(1): p. 10643.
139. Kamalakar, M.V., et al., Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride. Scientific Reports, 2014. 4(1): p. 6146.
140. Gurram, M., S. Omar, and B.v. Wees, Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructures. Nature Communications, 2017. 8(1): p. 248.
141. May, A.F., et al., Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano, 2019. 13(4): p. 4436-4442.
142. Zhang, H., et al., Itinerant ferromagnetism in van der Waals Fe5–xGeTe2 crystals above room temperature. Physical Review B, 2020. 102(6): p. 064417.
143. Ma, X., et al., Ferromagnetism above Room Temperature in Two Intrinsic van der Waals Magnets with Large Coercivity. Nano Letters, 2023. 23(23): p. 11226-11232.
144. Liu, S., et al., Room-temperature valley polarization in atomically thin semiconductors via chalcogenide alloying. ACS Nano, 2020. 14(8): p. 9873-9883.