研究生: |
李中天 Chung-Tien Li |
---|---|
論文名稱: |
不同形貌及結構二氧化錫一維奈米結構的合成及其應用 Shape and Structure Control of Various SnO2 1-D Nanostructures and Their Applications |
指導教授: |
施漢章
Han-Chang Shih |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 89 |
中文關鍵詞: | 奈米線 、奈米棒 、奈米水草 、場發射性質 、氣體感測器 、光致激發光譜 、奈米材料 、二氧化錫 |
外文關鍵詞: | nanowire, nanorod, waterweed-like SnO2 nanowire, field emission, gas sensor, photoluminescence spectrum, nanomaterial, SnO2 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在製備不同形貌之二氧化錫一維奈米結構。利用化學沉積法,經由調控不同的時間、壓力、溫度等實驗參數,影響或改變奈米結構生長的機制及最後生長的形貌。本研究中已合成的奈米結構包含具分枝狀的奈米線(SnO2 nanowires with branched structure)、奈米棒(SnO2 nanorods)、頂端具一次轉折之奈米線(hockey-like SnO2 nanowires)、奈米水草(waterweed-like SnO2 nanowires)。上述奈米結構是以矽作為基板,金作為觸媒所成長。另外我們亦嘗試以氧化鋁作基板,鈦作為觸媒成長二氧化錫奈米結構,經SEM觀察,有二氧化錫奈米線及奈米帶(nanobelts)的生長。為了解奈米結構的生長情形,TEM、SEM、X-Ray、EDS等分析鑑定儀器也在本研究中使用。除了探討不同二氧化錫奈米結構的生長情形外,我們針對具分枝狀奈米線及奈米水草做其他性質的分析。本研究所做的分析包含螢光光譜分析、場發射性質分析,以及對一氧化碳和乙醇的氣體感測分析。分析結果顯示這兩種奈米結構都有很好的發光及場發射性質,而在氣體感測的試驗中,奈米水草因具有較高的比表面積而對一氧化碳和酒精有較好的感測靈敏度。
Various SnO2 1-D nanostructures were synthesized by adjusting the experimental parameters. We have successfully synthesized the hockey-like SnO2 nanowires under ambient pressure; waterweed-like SnO2 nanowires by a two-step process; SnO2 nanowires and nanorods were synthesized under different working temperatures; moreover, SnO2 nanowires with different included angles were also synthesized. SnO2 nanostructures on the silicon substrate with Au as catalyst have been synthesized. However, we have also synthesized SnO2 nanowires on Al2O3 by using Ti as catalyst. In addition to the VLS mechanism, various growth mechanisms of the SnO2 1-D nanostructures were also discussed, such as Ostwald ripening.
Furthermore, we have focused on the properties and applications of these SnO2 nanostructures. SnO2 nanowires with branched structures and waterweed-like SnO2 nanowires were compared in terms of optical properties, field emission tests, and gas senor tests. These two SnO2 nanostructures show good properties in field emission tests, and good field-enhancement factor β (βH=4054.37 in SnO2 nanowires with branched structures; βH=2086.92 in waterweed-like SnO2 nanowires). In gas sensor tests, the sensitivity of waterweed-like SnO2 nanowires is superior to SnO2 nanowires with branched structure on detecting CO and C2H5OH owing to higher surface-to-volume ratio of waterweed-like SnO2 nanowires.
[1] Z.R. Dai, Z.W. Pan, and Z.L. Wang, “Novel nanostructure of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater. 2003, 13, No. 1, 9
[2] M. Law, X.F. Zhang, R. Yu, T. Kuykendall, and P. Yang, “Thermally Driven Interfacial Dynamics of Metal/Oxide Bilayer Nanoribbons”, small 2005, 1, No. 8-9, 858
[3] J. Westwater, D.P. Gosain, and S. Usui, “Si Nanowires Grown via the Vapour-Liquid-Solid Reaction”, phys. stat. sol. (a) 1998, 165, 37-42
[4] P. Nguyen, H.T. Ng, and M. Meyyappan, “Catalyst Metal Selection for Synthesis of Inorganic Nanowires”, Adv. Mater. 2005, 17, 1773
[5] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimentional nanostructures: Synthesis, Characterization, and Application”, Adv. Mater. 2003, 15, No. 5, 353
[6] U.S. Chen, Y.L. Chueh, S.H. Lai, L.J. Chou, H.C. Shih, “Synthesis and characterization of self-catalyzed CuO nanorods on Cu/TaN/Si assembly using vacuum-arc Cu deposition and vapor-solid reaction”, J. Vac. Sci. Technol. B 2006, 24(1), 139
[7] J.Y. Lao, J.Y. Huang, D.Z. Wang, and Z.F. Ren, “ZnO Nanobridges and Nanonails”, Nano Lett. 2003, 3(2) 235
[8] J.M. Wu, H.C. Shih, W.T. Wu, “Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation”, Nanotechnology 2006, 17(1), 105
[9] Z.R. Dai, J.L. Gole, J.D. Stout, and Z.L. Wang, “Tin Oxide Nanowires, Nanoribbons, and Nanotubes”, J. Phys. Chem. B 2002, 106, 1274
[10] G. Salviati, L. Lazzarini, M.Z. Zha, V. Grillo, and E. Carlino, “Cathodoluminescence spectroscopy of single SnO2 nanowires and nanobelts”, phys. stat. sol. (a) 2005, 202, 2963
[11] J. Hu, Y. Bando, Q. Liu, and D. Golberg, “Laser-Ablation Growth and Optical Properties of Wide and Long Single-Crystal SnO2 Ribbons”, Adv. Funct. Mater. 2003, 13, No. 6, 493
[12] D. Calestani, L. Lazzarini, G. Salviati, and M. Zha, “Morphological, structural and optical study of quasi-1D SnO2 nanowires and nanobelts”, Cryst. Res. Technol. 2005, 40, No. 10-11, 937
[13] S.V. Kalinin, J. Shin, S. Jesse, D. Geohegan, and A.P. Baddorf, “Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device”, J. Appl. Phys. 2005, 98(4), 044503
[14] X.S. Peng, L.D. Zhang, G.W. Meng, Y.T. Tian, Y. Lin, B.Y. Geng, and S.H. Sun, “Micro-Raman and infrared properties of SnO2 nanobelts synthesized from Sn and SiO2 powders”, J. Appl. Phys. 2003, 93(3), 1760
[15] Y.J. Chen, Q.H. Li, Y.X. Liang, and T.H. Wang, “Field-emission from long SnO2 nanobelt arrays”, Appl. Phys. Lett. 2004, 85, 5682
[16] Y.J. Ma, F. Zhou, L. Lu, and Z. Zhang, “Low-temperature transport properties of individual SnO2 nanowires”, Solid State Commun. 2004, 130, 313
[17] S.H. Tsai, C.W. Chao, C.L. Lee, and H.C. Shih, “Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis”, Appl. Phys. Lett. 1999, 74, 3462
[18] S.H. Tsai, C.L. Lee, C.W. Chao, H. C. Shih, “A novel technique for the formation of carbon-encapsulated metal nanoparticles on silicon”, Carbon 2000, 38, 781
[19] S.H. Tsai, C.T. Shiu, S.H. Lai, H.C. Shih, “Tubes on tube—a novel form of aligned carbon nanotubes”, Carbon 2002, 40, 1597
[20] Y.S. He, J.C. Campbell, R.C. Murphy, M.F. Arendt, and J.S. Swinnea, “Electrical and optical characterization of Sb-Sno2”, J. Mater. Res. 1993, 8, 3131
[21] W. Dazhi, W. Shulin, C. Jun, Z. Suyuan and L. Fangqing, “Microstructure of SnO2”, Phys. Rev. B. 1994, 49, 282
[22] C. Tatsuyama, and S, Ichimura, Jpn. J. Appl. Phys. 1976, 15, 834
[23] A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles”, Nano Lett. 2005, 5(4), 667
[24] Q. Wan, and T.H. Wang, “Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application”, Chem. Commun. 2005, 3841
[25] S.I. Rembeza, E.S. Rembeza, T.V. Svistova, and O.I. Borsiakova, “Electrical resistivity and gas response mechanisms of nanocrystalline SnO2 films in a wide temperature range”, phys. stat. sol. (a) 2000, 179, 147
[26] A.S. Ryzhikov, A.N. Shatokhin, F.N. Putilin, M.N. Rumyantseva, A.M. Gaskov, and M. Labeau, “Hydrogen sensitivity of SnO2 thin films doped with Pt by laser ablation”, Sensor Acutat. B-Chem. 2005, 107, 387
[27] J.X. Wang, D.F. Liu, X.Q. Yan, H.J. Yuan, L.J. Ci, Z.P. Zhou, Y. Gao, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, and S.S. Xie, “Growth of SnO2 nanowires with branched structures”, Solid State Commun. 2004, 130, 89
[28] S.H. Sun, G.W. Meng, Y.W. Wang, T. Gao, M.G. Zhang, Y.T. Tian, X.S. Peng, L.D. Zhang, “Large-scale synthesis of SnO2 nanobelts”, Appl. Phys. A 2003, 76, 287
[29] J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, and Z.L. Wang, “Beaklike SnO2 Nanorods with Strong Photoluminescent and Field-Emission Properties”, small 2006, 2, No. 1, 116
[30] P. Nguyen, H.T. Ng, J. Kong, A.M. Cassell, R. Quinn, J. Li, J. Han, M. McNeil, and M. Meyyappan, “Epitaxial Directional Growth of Indium-Doped Tin Oxide Nanowire Arrays”, Nano Lett. 2003, 3, No. 7, 925
[31] Y. Liu, J. Dong, and M. Liu, “Well-Aligned Nano-Box-Beams of SnO2”, Adv. Mater. 2004, 16, No.4, 353
[32] J.Q. Hu, Y. Bando, and D. Golberg, “Self-catalyst growth and optical properties of SnO2 fishbone-like nanoribbons”, Chem. Phys. Lett. 2003, 372, 758
[33] H.W. Kim, N.H. Kim, J.H. Myung, and S.H. Shim, “Characteristics of SnO2 fishbone-like nanostructures prepared by the thermal evaporation”, phys. stat. sol. (a) 2005, 202, No. 9, 1758
[34] Y. Wu, H. Yan, M. Huang, B. Messer, J.H. Song, and P. Yang, “Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties”, Chem. Eur. J. 2002, 8, No.6, 1261
[35] T.J. Trentler, K.M. Hichman, S.C. Geol, A.M. Viano, P.C. Gibbons, and W.E. Buhro, “Solution-Liquid-Solid growth of crystalline III-V semiconductors - an analogy to Vapor-Liquid-Solid growth”, Science 1995, 270, 1791
[36] R.Q. Zhang, Y. Lifshitz, and S.T. Lee, “Oxide-Assisted Growth of semiconducting nanowires”, Adv. Mater. 2003, 15, No. 7-8, 635
[37] D.R. Vij and N. Singh, “Luminescence and related properties of II-IV semiconductors”, 1998
[38] R. Gomer, “Field emission and field ionization”, 1961
[39] L. Solymar, and D. Walsh, “Electrical properties of materials”, sixth edition, 1999
[40] http://ece-www.colorado.edu/~bart/book/contents.htm
[41] K. Ihokura, and J. Watson, “The stannic oxide gas sensor /principles and applications”, 1994
[42] 范成至,“以二氧化錫為氣體感測材料之特性探討 ”, 碩士論文
[43] Yamazoe, N., Proc. 3rd Int. Meet. Chem. Sensors, 1990
[44] S. Nakata, K. Takemura, N. Ojima, T. Hiratani, S. Yamabe, “Mechanism of nonlinear responses of a semiconductor gas sensor”, Instrum. Sci. Technol. 2000, 28(3), 241
[45] G. Wulff, Z. Kristallogr. Mineral. 34, 449, 1901
[46] B. Slater, C. Richard A. Catlow, D.H. Gay, D.E. Williams, and V. Dusastre, “Study of Surface Segregation of Antimony on SnO2 Surfaces by Computer Simulation Techniques”, J. Phys. Chem. B 1999, 103, 10644
[47] J.G. McLean, B. Krishnamachari, and D.R. Peale, “Decay of isolated surface features driven by the Gibbs-Thomson effect in an analytic model and a simulation”, Phys. Rev. B 1997, 55(3), 1811
[48] Hung-Hsiao Lin, “Synthesis and Electron Field Emission Properties of the Copper Oxide Nanofibers”, 碩士論文
[49] T. Minami, T. Miyata, T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering”, Surf. Coat. Technol. 1998, 108, 583
[50] S. Dimitrijevic, J.C. Withers, V.P. Mammana, O.R. Monteiro, J.W. Ager, and I.G. Brown, “Electron emission from films of carbon nanotubes and ta-C coated nanotubes”, Appl. Phys. Lett. 1999, 75, 2680