簡易檢索 / 詳目顯示

研究生: 于林生
Yu, Lin-Sheng
論文名稱: 利用果蠅探討思覺失調症相關基因 neurexin-1 對空間行為短期記憶之影響
Using Drosophila as a model organism to investigate the effect of schizophrenia-associated gene neurexin-1 in spatial behavior short-term memory.
指導教授: 張慧雲
Chang, Hui-Yun
口試委員: 汪宏達
Wang, Horng-Dar
羅中泉
Lo, Chung-Chuan
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 41
中文關鍵詞: 思覺失調果蠅神經系統
外文關鍵詞: Drosophila melanogaster, Schizophrenia, neuron
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 思覺失調症(schizophrenia),早期又名精神分裂症,為一種導致社會行為異
    常與認知混亂的精神疾病,臨床症狀包括幻覺、思維障礙、幻聽與社交功能障礙…
    等,病患通常於青春期或成年期間罹患疾病。導致思覺失調症發生的主因目前包
    含環境因素和基因因素,研究中顯示,長期的藥物濫用或是處於逆境成長的孩童,
    均有很高的機率造成思覺失調症病發。而在基因因素方面,目前有許多研究證實
    基因突變、單核甘酸多樣性(single nucleotide polymorphism; SNP)和複製數變異(copy number variation; CNV)均與思覺失調症的發生有相關,neurexin-1 則為其中候選基因之一。neurexin-1 為前突觸黏附蛋白,位於前突觸的表面,在前後突觸的連接中扮演重要的腳色,其作用與突觸囊泡(synaptic vesicle)的釋放和突觸的可塑性(synaptic plasticity)有相關,在部分患者中已發現此基因的突變或缺失。在此實驗中,利用果蠅作為模式生物來研究與人類同源的基因Drosophila neurexin 1 (dnrx),在成蟲之後抑制其表達,對於大腦中神經元的型態、突觸功能以及空間短期記憶的影響。結果發現,當果蠅成蟲後,當抑制 neurexin 1 表現時,會造成果蠅大腦中神經元減少並影響突觸小泡的釋放,此現象可能與導致思覺失調症的原因有關,而在行為實驗中發現,果蠅的短期記憶產生缺陷。


    Schizophrenia is a mental disorder which leads to abnormal behavior and cognitive disorder. The clinical symptoms include hallucinations, delusions, social withdrawal and disorganized thinking and speech etc. Schizophrenia most commonly happen between the ages of 16 and 30. The causes of schizophrenia include
    environmental factors and genetic factors. The previous research observe that drug abuse or childhood trauma are high risks to result the people in schizophrenia. In genetic factors, such studys suggest that the mutation, single nucleotide polymorphism and copy number variation in some candidate genes may lead to
    schizophrenia. One of those genes is neurexin-1 which encode the presynaptic adhesion protein neurexin-1. Neurexin-1 plays an important role in synaptic vesicle release and synaptic plasticity. Genetic deletion or mutation in neurexin-1 are found in some patients. In this study, we express the dnrx knockdown which is human homologous gene in adult Drosophila. The results show that dnrx knockdown may decrease the number of neurons in adult fly brain and the synaptic vesicular release were affected in this model. we also found that the short-term memory of Drosophila was deficit in the hehavior experiment.

    摘要...................................................... I Abstract.................................................. II Acknowledgement........................................... III Contents.................................................. IV Introduction.............................................. 1 1.Schizophrenia.......................................... 1 2. The environmental risk factors in schizophrenia....... 1 3. The genetic risk factors in schizophrenia............. 2 4. Human gene neurexin in schizophrenia.................. 3 5. The synapse in schizophrenia.......................... 4 6. Behavior of schizophrenia............................. 6 7. Model organism: Drosophila melanogaster............... 7 8. Drosophlia genes neurexin (dnrx)...................... 8 Methods and materials..................................... 11 Drosophila stocks........................................ 11 Confocal images.......................................... 11 Behavior experiment...................................... 12 Statistical analysis..................................... 13 Results................................................... 14 The GFP signal is decreased in adult Drosophila head by dnrx knockdown expressed after eclosion....................... 14 Dnrx knockdown result in reducing the synaptic vesicles release in the drosophila brain.................................. 15 The short-term memory of Drosophila may impaired by dnrx knockdown in behavior experiment......................... 16 Discussion................................................ 19 The morphological pattern of Drosophila neurons are affected by expressing of neurexin after eclosion in pan-neuron...... 19 Synaptic exocytosis decreased by dnrx knockdown may cause by calcium channel impaired in the synapses................. 20 The heterozygous dnrx mutation may affect behavior and short- term memory in Drosophila................................ 21 Figures................................................... 23 Figure 1. The neurexin-neuroligin complex interacted in the synaptogenesis. ......................................... 24 Figure 2. The protein structure of the human NRXNα, and Drosophila NRX. ......................................... 25 Figure 3. The short-term spatial memory of Drosophila behavior analysis and preform index............................... 26 Figure 4. The GAL4-UAS system was regulated by Tublin-GAL80ts at different temperature.................................... 28 Figure 5. The Drosophila pan-neural expression pattern are decreased by dnrx knockdown.............................. 30 Figure 6. Dnrx knockdown affected the synaptic vesicle release function in Drosophila pan-neurons....................... 32 Figure 7. The short-term spatial memory of Drosophila seems no different in high temperture enviroment.................. 33 Figure 8. The short-term spatial memory of Drosophila was deficit in dnrx RNAi knockdown background................ 34 Figure 9. The Drosophila shrot-term spatial memory was disorder by dnrx RNAi knockdown................................... 35 References................................................ 36

    References

    1 Owen, M. J., Sawa, A. & Mortensen, P. B. Schizophrenia. The Lancet 388,
    86-97 (2016).
    2 van Os, J. & Kapur, S. Schizophrenia. The Lancet 374, 635-645 (2009).
    3 Matheson, S., Shepherd, A. M., Pinchbeck, R., Laurens, K. & Carr, V. J.
    Childhood adversity in schizophrenia: a systematic meta-analysis.
    Psychological medicine 43, 225-238 (2013).
    4 Henquet, C., Murray, R., Linszen, D. & van Os, J. The environment and
    schizophrenia: the role of cannabis use. Schizophrenia bulletin 31, 608-612
    (2005).
    5 Brown, A. S. & Susser, E. S. Prenatal nutritional deficiency and risk of adult
    schizophrenia. Schizophrenia bulletin 34, 1054-1063 (2008).
    6 Schizophrenia Working Group of the Psychiatric Genomics, C. et al.
    Biological insights from 108 schizophrenia-associated genetic loci. Nature 511,
    421 (2014).
    7 Karayiorgou, M. et al. Schizophrenia Susceptibility Associated with
    Interstitial Deletions of Chromosome 22q11. Proceedings of the National
    Academy of Sciences of the United States of America 92, 7612-7616 (1995).
    8 Lowther, C., Costain, G., Baribeau, D. A. & Bassett, A. S. Genomic Disorders
    in Psychiatry—What Does the Clinician Need to Know? Current Psychiatry
    Reports 19, 82 (2017).
    9 Baudouin, S. & Scheiffele, P. SnapShot: Neuroligin-Neurexin Complexes.
    Cell 141, 908-908.e901 (2010).
    10 Chen, F., Venugopal, V., Murray, B. & Rudenko, G. The Structure of Neurexin
    1α Reveals Features Promoting a Role as Synaptic Organizer. Structure 19,
    779-789 (2011).
    11 Dean, C. & Dresbach, T. Neuroligins and neurexins: linking cell adhesion,
    synapse formation and cognitive function. Trends in Neurosciences 29, 21-29
    (2006).
    12 Craig, A. M. & Kang, Y. Neurexin–neuroligin signaling in synapse
    development. Current opinion in neurobiology 17, 43 (2007).
    13 Shen, K. C. et al. Regulation of Neurexin 1β Tertiary Structure and Ligand
    Binding through Alternative Splicing. Structure 16, 422-431 (2008).
    14 Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals.
    Nature Neuroscience 6, 708 (2003).
    15 Kirov, G. et al. Neurexin 1 (NRXN1) Deletions in Schizophrenia.
    Schizophrenia Bulletin 35, 851-854 (2009).
    16 Zweier, C. et al. CNTNAP2 and NRXN1 Are Mutated in
    Autosomal-Recessive Pitt-Hopkins-like Mental Retardation and Determine the
    Level of a Common Synaptic Protein in Drosophila. The American Journal of
    Human Genetics 85, 655-666 (2009).
    17 Rujescu, D. et al. Disruption of the neurexin 1 gene is associated with
    schizophrenia. Human Molecular Genetics 18, 988-996 (2009).
    18 Foster, M. A Text Book of Physiology: The central nervous system.
    (Macmillan, 1897).
    19 Dalva, M. B., McClelland, A. C. & Kayser, M. S. Cell adhesion molecules:
    signalling functions at the synapse. Nature Reviews Neuroscience 8, 206
    (2007).
    20 Feinberg, I. Schizophrenia: Caused by a fault in programmed synaptic
    elimination during adolescence? Journal of Psychiatric Research 17, 319-334
    (1982).
    21 Lisman, J. E. et al. Circuit-based framework for understanding
    neurotransmitter and risk gene interactions in schizophrenia. Trends in
    Neurosciences 31, 234-242 (2008).
    22 Gejman, P. V., Sanders, A. R. & Duan, J. The Role of Genetics in the Etiology
    of Schizophrenia. Psychiatric Clinics of North America 33, 35-66 (2010).
    23 Powell, C. M. & Miyakawa, T. Schizophrenia-Relevant Behavioral Testing in
    Rodent Models: A Uniquely Human Disorder? Biological Psychiatry 59,
    1198-1207 (2006).
    24 File, S. E. & Hyde, J. R. Can social interaction be used to measure anxiety?
    British Journal of Pharmacology 62, 19-24 (1978).
    25 Sams-Dodd, F. Automation of the social interaction test by a video-tracking
    system: behavioural effects of repeated phencyclidine treatment. Journal of
    Neuroscience Methods 59, 157-167 (1995).
    26 Wilson, C. A. & Koenig, J. I. Social interaction and social withdrawal in
    rodents as readouts for investigating the negative symptoms of schizophrenia.
    European Neuropsychopharmacology 24, 759-773 (2014).
    27 Heinrichs, R. W. & Zakzanis, K. K. Neurocognitive deficit in schizophrenia: a
    quantitative review of the evidence. Neuropsychology 12, 426 (1998).
    28 Sang, J. H. Drosophila melanogaster: the fruit fly. Encyclopedia of genetics
    157, 162 (2001).
    29 Reiter, L. T., Potocki, L., Chien, S., Gribskov, M. & Bier, E. A systematic
    analysis of human disease-associated gene sequences in Drosophila
    melanogaster. Genome research 11, 1114-1125 (2001).
    30 Jaiswal, M., Sandoval, H., Zhang, K., Bayat, V. & Bellen, H. J. Probing
    Mechanisms That Underlie Human Neurodegenerative Diseases in Drosophila.
    Annual Review of Genetics 46, 371-396 (2012).
    31 Bier, E. Drosophila, the golden bug, emerges as a tool for human genetics.
    Nature Reviews Genetics 6, 9 (2005).
    32 Ardekani, R. et al. Three-dimensional tracking and behaviour monitoring of
    multiple fruit flies. Journal of The Royal Society Interface 10 (2013).
    33 Strauss, R. & Pichler, J. Persistence of orientation toward a temporarily
    invisible landmark in Drosophila melanogaster. Journal of Comparative
    Physiology A 182, 411-423 (1998).
    34 Zeng, X. et al. Neurexin-1 is required for synapse formation and larvae
    associative learning in Drosophila. FEBS Letters 581, 2509-2516 (2007).
    35 Reissner, C., Runkel, F. & Missler, M. Neurexins. Genome Biology 14, 213
    (2013).
    36 Rui, M. et al. The neuronal protein Neurexin directly interacts with the
    Scribble-Pix complex to stimulate F-actin assembly for synaptic vesicle
    clustering. Journal of Biological Chemistry, jbc. M117. 794040 (2017).
    37 Li, J., Ashley, J., Budnik, V. & Bhat, M. A. Crucial Role of Drosophila
    Neurexin in Proper Active Zone Apposition to Postsynaptic Densities,
    Synaptic Growth, and Synaptic Transmission. Neuron 55, 741-755 (2007).
    38 Larkin, A. et al. Neurexin-1 regulates sleep and synaptic plasticity
    in Drosophila melanogaster. European Journal of Neuroscience 42, 2455-2466
    (2015).
    39 Sun, M. & Xie, W. Cell adhesion molecules in Drosophila synapse
    development and function. Science China Life Sciences 55, 20-26 (2012).
    40 Sun, M., Zeng, X. & Xie, W. Temporal and spatial expression of Drosophila
    Neurexin during the life cycle visualized using a DNRX-Gal4/UAS-reporter.
    Science China Life Sciences 59, 68-77 (2016).
    41 Kavalali, E. T. & Jorgensen, E. M. Visualizing presynaptic function. Nature
    Neuroscience 17, 10 (2013).
    42 Dachtler, J. et al. Heterozygous deletion of α-neurexin I or α-neurexin II
    results in behaviors relevant to autism and schizophrenia. Behavioral
    neuroscience 129, 765 (2015).
    43 Tong, H., Li, Q., Zhang, Z. C., Li, Y. & Han, J. Neurexin regulates nighttime
    sleep by modulating synaptic transmission. Scientific reports 6, 38246 (2016).
    44 McGuire, S. E., Le, P. T. & Davis, R. L. The Role of <em>Drosophila</em>
    Mushroom Body Signaling in Olfactory Memory. Science (2001).
    45 Chen, K. et al. Neurexin in Embryonic Drosophila Neuromuscular Junctions.
    PLOS ONE 5, e11115 (2010).
    46 Banerjee, S., Venkatesan, A. & Bhat, M. A. Neurexin, Neuroligin and Wishful
    Thinking coordinate synaptic cytoarchitecture and growth at neuromuscular
    junctions. Molecular and Cellular Neuroscience 78, 9-24 (2017).
    47 Südhof, T. C. & Rizo, J. Synaptic vesicle exocytosis. Cold Spring Harbor
    perspectives in biology, a005637 (2011).
    48 Pak, C. et al. Human Neuropsychiatric Disease Modeling using Conditional
    Deletion Reveals Synaptic Transmission Defects Caused by Heterozygous
    Mutations in NRXN1. Cell Stem Cell 17, 316-328 (2015).
    49 Neupert, C. et al. Regulated Dynamic Trafficking of Neurexins Inside and
    Outside of Synaptic Terminals. The Journal of Neuroscience 35, 13629-13647
    (2015).
    50 Missler, M. et al. α-Neurexins couple Ca2+ channels to synaptic vesicle
    exocytosis. Nature 423, 939 (2003).
    51 Rabaneda, Luis G., Robles-Lanuza, E., Nieto-González, José L. & Scholl,
    Francisco G. Neurexin Dysfunction in Adult Neurons Results in Autistic-like
    Behavior in Mice. Cell Reports 8, 338-346 (2014).
    52 Calahorro, F. & Ruiz-Rubio, M. Human alpha- and beta-NRXN1 isoforms
    rescue behavioral impairments of Caenorhabditis elegans neurexin-deficient
    mutants. Genes, Brain and Behavior 12, 453-464 (2013).
    53 Jung, W. & Lee, S.-H. Memory deficit in patients with schizophrenia and
    posttraumatic stress disorder: relational vs item-specific memory.
    Neuropsychiatric Disease and Treatment 12, 1157-1166 (2016).
    54 Van Snellenberg, J. X. et al. Mechanisms of Working Memory Impairment in
    Schizophrenia. Biological Psychiatry 80, 617-626 (2016).

    QR CODE