簡易檢索 / 詳目顯示

研究生: 林旺杰
論文名稱: 粒子群演算法計算薛丁格方程的基態解與其GPU加速
指導教授: 陳人豪
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 39
中文關鍵詞: 粒子群演算法薛丁格方程式繪圖處理器
外文關鍵詞: PSO, Schrödinger equation, CUDA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    不含時薛丁格方程式為物理學的基礎方程式之一,傳統方法都是將此問題視為矩陣特徵值問題以有限差分法求解,而在本文裡將提供一個新的方式解決此問題,直接將對應的能量泛函極小化,也就是說我們將此問題的能量泛函視為最佳化的問題裡的適應函數,然後使用粒子群演算法計算出最小(波函數)以及對應的適應函數值(能量),最後在使用繪圖處理器協同運算,加速程式執行效率。


    Abstract
    The time-independent Schrödinger equation is one of the fundamental equations in physics. The conventional method for this equation is to solve an eigenvalue matrix problem derived from some discretization methods, such as the finite difference techique. In this thesis, we demonstrate a novel way to solve such problem. We directly minimize the corresponding energy functional. That is, we treat this essential problem as an optimization problem and the energy functional is the fitness function. We particularly employ the particle swarm optimization method to obtain the minimizer (wave function) and the corresponding fitness function value (energy). Finally, we also use the graphics processing unit to accelerate the computation of this problem.

    目錄 1. 緒論 1 2. 粒子群演算法 2 2.1 粒子群演算法簡介 2 2.2 PSO演算法 3 2.2.1 初始化、參數設定 3 2.2.2 評估每個粒子 3 2.2.3 粒子狀態更新 3 2.2.4 檢驗是否符和結束條件 5 3. 薛丁格方程式 7 3.1 薛丁格方程式介紹 7 3.2 不含時薛丁格方程式 7 4. GPU圖形處理器平行化運算 9 4.1 GPGPU 9 4.2 CUDA 9 4.3 CURAND 11 5. 程式介紹 14 5.1 CPU版本程式展現 14 5.2 GPU版本程式展現 23 6. 數值結果 33 6.1 程式執行時間差異 33 6.2 數值結果曲線圖 37 7. 參考文獻 39

    參考文獻
    [1] 陳士杰, 粒子群演算法基礎 (Foundations of Particle Swarm Optimization).
    [2] Griffiths, David J., Introduction to Quantum Mechanics (2nd ed.), Prentice Hall, 2004, ISBN 0-13-111892-7
    [3] Kennedy, James. "Particle swarm optimization." Encyclopedia of Machine Learning. Springer US, 2010. 760-766.
    [4] F. Heppner and U. Grenander, “A stochastic nonlinear model for coordinated bird flocks,” In S. Krasner, Ed, The Ubiquity of Chaos. AAAS Publications, Washington, DC, 1990.
    [5] E. O. Wilson, “Sociobiology: the new synthesis,” Belknap Press, Cambridge, MA, 1975.
    [6] Eberhart, Russell C., and Yuhui Shi. "Particle swarm optimization: developments, applications and resources." Evolutionary Computation, 2001. Proceedings of the 2001 Congress on. Vol. 1. IEEE, 2001.
    [7] CUDA簡介,
    http://www2.kimicat.com/cuda%E7%B0%A1%E4%BB%8B
    [8] 張舒, GPU高效能運算之CUDA, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE