研究生: |
簡義純 Jian, Yi-Chuen |
---|---|
論文名稱: |
利用新穎矽/鍺超晶格通道結構以改善電荷陷阱式快閃記憶體操作特性 Enhancements on operation characteristics of charge-trapping type flash memory devices by using novel Si/Ge super-lattice channel |
指導教授: |
張廖貴術
Chang-Liao, Kuei-Shu |
口試委員: |
蔡銘進
趙天生 張廖貴術 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 126 |
中文關鍵詞: | 矽化鍺 、矽/鍺超晶格 、快閃記憶體 、高介電值材料 |
外文關鍵詞: | SiGe, Si/Ge Superlattice, flash memory, high k |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於浮動式閘極快閃記憶體無法滿足元件微縮發展的趨勢,因此利用電荷陷阱式快閃記憶體式取代浮動式閘極結構元件是未來發展的趨勢。然而傳統SONOS元件以氮化矽做為電荷儲存層的結構,在發展到次微米以下時就無法再以降低穿隧氧化層厚度的方式來提升元件操作效率,因此便引進了高介電值材料來取代傳統ONO結構以提升元件操作特性。而在通道介面處磊晶一層矽化鍺或多層Si/Ge超晶格,藉由能帶工程讓通道上會有更多的電子電洞對可以被產生,希望藉此異質材料的應用可以達到較快的操作速度。
本實驗用電晶體結構,比較不同的矽化鍺通道,藉由改變矽化鍺通道中的鍺含量及通道厚度,進而改變通道的能帶結構,探討對於TAHOS元件的效率影響。以電容結構,為了達到高濃度的目的,我們首先引用了多層Si/Ge超晶格通道於快閃記憶體上。並發現多層Si/Ge超晶格通道擁有好的結晶結構和極低的表面粗糙度。比較矽化鍺和多層Si/Ge超晶格通道元件的操作特性,或是控制多層Si/Ge超晶格通道在總厚度相同的條件下,藉由改變每一層純鍺的厚度,進而改變通道的能帶結構,來探討對於TAHOS元件的操作特性影響。最後再以電晶體結構,比較矽化鍺和多層Si/Ge超晶格通道,來探討超晶格結構對於電晶體元件的操作特性影響。
而經由實驗結果發現,使用矽化鍺通道,可以提升快閃記憶體的操作速度,而且可靠度不受影響。使用鍺含量較高的矽化鍺通道或是較厚的矽化鍺通道厚度,元件的操作速度會更快。對於使用多層Si/Ge超晶格通道之元件而言,皆具有比矽化鍺通道元件更快的操作速度,並同時能些許提升快閃記憶體之可靠度特性。
[1] Min She, “Semiconductor Flash Memory Scaling”, 2003.
[2] Marvin H. White, et al., “On the Go with SONOS”, IEEE Circuit &Device, JULY 2000, p. 22.
[3] Marvin H. White, et al., “A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 20, No.2, JUNE 1997, p. 190.
[4] Jiankang Bu, et al., “Retention reliability enhanced SONOS NVSM with scaled programming voltage”, IEEE Aerospace Conference paper, vol. 5, 2001, pp. 5-2383.
[5] K.Tamer San, et al., “Effects of erase source bias on Flash EPROM device reliability”, IEEE Transactions on Electron Devices, vol. 42, No.1, JANUARY 1995, p. 150.
[6] T.Sugizaki, et al., “Novel multi-bit SONOS type flash memory using a high-k charge trapping layer”, IEEE Symposium on VLSI Technology Digest of Technical Paper, 2003, p. 27.
[7] Yan-Ny Tan, et al., “Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation”, IEEE Transactions on Electron Devices, vol. 53, No 4, April 2006, pp. 654-662.
[8] Yan-Ny Tan, et al., “Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage Layer”, IEEE Transactions on Electron Devices , vol. 51, No.7, 2004, p. 1143.
[9] Moon Sig Joo, et al. “Dependence of Chemical Composition Ratio on
Electrical Properties of HfO2 Al2O3 Gate Dielectric”, Jpn. J. Appl. Phys., No.3A, March 2003, pp. 1220-1222.
[10] Ping-Hung Tsai, et al., “Charge-Trapping-Type Flash Memory Device With Stacked High-k Charge-Trapping Layer”, IEEE Electron Device Letters, vol. 30, No.7, July 2009, pp. 775-777.
[11] Chi-Chao Wang, et. al., “Enhanced Band-To-Band-Tunneling-Induced Hot - Electron Injection In p-Channel Flash by Band-Gap Offset Modification”, IEEE Electron Device Letters, vol. 27, No 9, September 2006, pp. 749-751.
[12] Qingqing Liang, J.D. Cressler, Guofu Niu, R.M. Malladi, K. Newton, D.L. Harame, “A physics-based high-injection transit-time model applied to barrier effects in SiGe HBTs”, in IEEE Trans. Electron Devices, vol. 49, 2002, pp. 1807-1813.
[13] Wu Lu, Almaz Kuliev, Steven J. Koester, Xie-WenWang, Jack O. Chu, Tso-Ping Ma and Ilesanmi Adesida, “High Performance 0.1_m Gate-Length P-Type SiGe MODFET’s and MOS-MODFET’s”, in IEEE Trans. Electron Devices, 2000, pp. 1645-1652.
[14] Q. Ouyang, X. D. Chen, S. Mudanai, D. L. Kencke, X. Wang, A. F. Tasch, and L. F. Register, and S. K. Banerjee, “Two-Dimensional Bandgap Engineering in a Novel Si/SiGe pMOSFET With Enhanced Device Performance and Scalability”, in IEEE SISPAD, 2000, pp. 151-154.
[15] Simon Tam, et al., “Lucky Electron Model of Channel Hot Electron Injection in MOSFET’s”, in IEEE Transaction on Electron Devices, vol. ED31, No.9, September 1984.
[16] Lei Sun, Liyang Pan, and Ying Zeng., “Effect of CHE and CHISEL Program on the Characteristics of SONOS Memory.”, in IEEE , 2004, pp. 695~698.
[17] Souvik Mahapatra, S. Shukuri, and Jeff Bude, “CHISEL Flash EEPROM—Part I: Performance and Scaling”, in IEEE Trans. Electron Devices, vol. 49, 2002, pp. 1296-1301.
[18] Souvik Mahapatra, S. Shukuri, and Jeff Bude, “CHISEL Flash EEPROM—Part II: Reliability”, in IEEE Trans. Electron Devices, vol. 49, 2002, pp. 1302 -1307.
[19] T. Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakibara, N. Tsuji, N. Ajika, M. Hatanaka and H. Miyoshi, “Novel Electron Injection Method Using Band-to-Band Tunneling Induced Hot Electron (BBHE) for Flash Memory with a P-channel Cell”, in IEDM Tech. Dig., 1995, pp. 179-182.
[20] Takahiro Ohnakado, Hiroshi Onoda, Osamu Sakamoto, Kiyoshi Hayashi, Naho Nishioka, Hiroshi Takada, Kazuyuki Sugahara, Natsuo Ajika, and Shin-ichi Satoh, “Device Characteristics of 0.35 m P-Channel DINOR Flash Memory Using Band-to-Band Tunneling-Induced Hot Electron (BBHE) Programming”, in IEEE Trans. Electron Devices, vol. 46, 1999, pp. 1866-1871.
[21] Kailash Gopalakrishnan, Raymond Woo, Rohit Shenoy, Yusuke Jono, Peter B. Griffin, and James D. Plummer, “Novel Very High IE Structures Based on the Directed BBHE Mechanism for Ultralow-Power Flash Memories”, in IEEE Electron Device Letters, vol.26 , 2005, pp. 212-215.
[22] S. S. Chung, S. T. Liaw, C. M. Yih, Z. H. Ho, C. J. Lin, D. S. Kuo, and M. S. Liang, “N-Channel Versus P-Channel Flash EEPROM Which one has better reliabilities”, in IEEE Annual lnternatlonal Relrablllty Physics Symposium, 2001, pp. 67-72.
[23] M. Specht, et al., “Retention time of novel charge trapping memories using Al2O3 dielectrics”, IEEE Symposium on VLSI, 2003, p. 155.
[24] L. M. Weltzer and S. K. Banerjee, “Enhanced CHISEL Programming in Flash Memory Devices with SiGe Buried Layer,” Non-Volatile Memory Technology Symposium, 2004, pp. 31-33.
[25] Chi-Chao Wang, Kuei-Shu Chang-Liao, Chun-Yuan Lu and Tien-Ko Wang, IEEE Electron Device Lett., vol. 27, 2006, pp. 749–751.
[26] Scott C. Wolfson and Fat Duen Ho, IEEE Trans. Electron Devices, vol. 57, 2010, pp. 2499–2503.
[27] Chi On Chui, et al., Appl. Phys. Lett., vol. 83, 2003, pp. 3713–3715.
[28] Douglas J. Paul, Semiconductor Science and Technology, vol 19, No 10, October 2004 , pp. R75-R108.
[29] S.R. Sheng, M. Dion, S.P. McAlister, N.L. Rowell, JOURNAL OF CRYSTAL GROWTH, 2003, pp. 77-84.
[30] LIANG Renrong, et al., Tsinghua Science and Technology, vol. 14, Number 1, February 2009, pp. 62–67.
[31] Liqing Wu, J. App. Phys., vol. 84, 2165 , 1998, pp. 2166~2169.
[32] Pairot Moontragoon et al., Semiconductor Science and Technology, vol. 22, 2007, pp. 742~748.
[33] C.-H. Lin, B.-C. Hsu, M.H. Lee and C.W. Liu, IEEE Trans. Electron Devices, vol. 48, 2001, pp. 2125–2130.
[34] M. Spadafora, G. Privitera, A. Terrasi, S. Scalese, C. Bongiorno, A. Carnera, M. Di Marino and E. Napolitani, Appl. Phys. Lett., vol. 83, 2003, pp. 3713–3715.
[35] Luca Larcher, et al., “On the Physical Mechanism of the NROM Memory Erase”, IEEE Transactions on Electron Devices, vol. 51, No.10, October 2004,
pp. 1593-1599.