研究生: |
黃享弘 |
---|---|
論文名稱: |
高可靠度銅導電橋式記憶體應用於 1T1R記憶體陣列之研製 Highly Reliable Conductive Bridge Resistive Memory and Fabricating 1T1R Memory Array |
指導教授: | 吳孟奇 |
口試委員: |
劉埃森
李峰旻 何充隆 吳孟奇 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 電阻式記憶體 、銅導電橋式記憶體 、非揮發性記憶體 |
外文關鍵詞: | CBRAM |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非揮發性記憶體已經是當代的主流,隨著可攜式電子產品的蓬勃發展更是不可或缺。其中「銅導電橋式記憶體 (CBRAM)」由於結構簡單,存取速度快,以及省電的特性,被認為是最有可能成為下一個世代的非揮發性記憶體元件。在本文中,首先利用電腦軟體TCAD對CBRAM進行模擬,改良元件的結構,針對CBRAM的特性做最佳化,最後將元件實作並搭配電晶體組合成一個1T1R結構的記憶體陣列,以應用在嵌入式記憶體為目標,展現它在次世代記憶體中的競爭優勢。
CBRAM 為金屬/固態電解質/絕緣層/金屬(MIM) 多層結構所堆疊而成,其中以MOS 製程所常用的銅、鎢分別用來充當上、下電極,銅原子擴散係數較高的介電材料當作固態電解質,藉由操作時給予元件適當的偏壓,在絕緣層中建立一條銅通道,使得元件可在高低電組態任意轉換。但我們也觀察到一個現象,在銅電阻絲距離固態電解質< 1nm時,由於電壓都集中在這個間隙上,產生超過10MV/cm的電場,超過絕緣層的崩潰電場並造成許多不可避免的缺陷,降低元件的操作次數。為了避免這個情況發生,我們在固態電解質層中夾了一層P-type的氧化銅當作緩衝層,不但可降低絕緣層的電場,減少上述的疑慮,還可以有效的防止銅離子擴散回固態電解質層中,改善CBRAM的可靠度。最後,為了應用在嵌入式記憶體上,我們用RTA模擬了焊接時的高溫製程進行測試,確保元件禁得起封裝時的高溫製程。
[1] Ralf Symanczyk, Rainer Bruchhaus, Rok Dittrich, IEEE Electrons Devices Letters, Vol. 30, No. 8, (2009).
[2] Michael Kund, Gerhard Beitel, Cay-Uwe Pinnow, 754-757, IEDM (2005).
[3] SAMSUNG Electronics Co Ltd. New Non-Volatile Memory Workshop at ITRI, Hsinchu, Taiwan (2011).
[4] Kuan-Chang Chang, Chih-Hung Pan, Ting-Chang Chang, Electron Device Letters, IEEE, pp.617-619 (2013).
[5] Hiroyuki Akinaga and Hisashi Shima, IEEE, Vol. 98, No. 12, December (2010).
[6] B. N. Engel, J. Åkerman, B. Butcher, R. W. Dave , IEEE Transactions On Magnetics, Vol. 41, No. 1, JANUARY (2005).
[7] Deepu Roy, Micha A. A. in ’t Zandt, and Rob A. M. Wolters, IEEE Electrons Devices Letters, Vol. 31, No. 11, November (2010).
[8] Rainer Bruchhaus, Matthias Honal, Ralf Symanczyk and Michael Kund J. Electrochem. Soc., Volume 156, Issue 9, Pages H729-H733. (2009).
[9] W. S. Chen, T. Y. Wu1, S. Y. Yang, et al., IEEE (2012).
[10] Akihiro Nitayama, IEDM 2009 Short Course.
[11] Joonmyoung Lee, Jubong Park, Seungjae Jung, IITC/MAM, IEEE, pp. 1-3, (2011).
[12] M. Tada, T. Sakamoto, M. Miyamura, IEDM 2011 Tech. Dig.
[13] Peng Xue, Song-bai Xue, Liang Zhang, et al., Soldering & Surface Mount Technology, Vol. 23 Iss: 3, pp.177–183, (2011).
[14] F.M. Lee, Lin, Y.Y.; Lee, M.H.; Chien, W.C., VLSIT, 2012 Symposium on.
[15] Jaeyun Yi, Hyejung Choi, Seokpyo Song, pp.1-2, VLSI-TSA, (2011).
[16] D. Walczyk, Ch. Walczyk, T. Schroeder, Microelectronic Engineering, Volume 88, Issue 7, July 2011, Pages 1133–1135.
[17] K. Aratani, K. Ohba, T. Mizuguchi, Electron Devices Meeting, IEDM 2007 Tech. Dig.
[18] Wootae Lee, Jubong Park, Myungwoo Son, IEEE Electron Device Letters, Vol. 32, No. 5, May (2011).
[19] V Sousa, Microelectronic Engineering, Volume 88, Issue 5, May (2011).
[20] T. Sakamoto, H. Sunamura, and H. Kawaura, Applied Physics Letters Vol. 82, No. 18 5 May (2003).
[21] Rainer Waser & Masakazu Aono Nature Materials 6, 833-840 (2007).
[22] C. Schindler, G. Staikov, and R. Waser Appl. Phys. Lett. 94, 072109 (2009).
[23] Shimeng Yu, H.-S. Philip Wong, IEEE Transaction on Electron Devices, Vol. 58, No. 5, (2011).
[24] Daniele Ielmini, IEEE Transaction on Electron Devices, Vol. 58, No. 12, December (2011).
[25] R Waser - Electron Devices Meeting, IEDM 2008 Tech. Dig. pp. 1-4.
[26] Dipt. di Elettron. e Inf., Politec. di Milano, Milan, Italy, IEEE Transactions On Electron Devices, Vol. 58, No. 12, December (2011).
[27] I. G. Baek, D. C. Kim, M. J. Lee, IEDM 2005 Tech. Dig. pp. 750-753
[28] E. Vianello, G. Molas, F. Longnos, IEDM 2012 Tech. Dig. pp. 31.5.1- 31.5.4.
[29] AA Ogwu, TH Darma, E Bouquerel, JAMME, Volume 24 Issue 1 September 2007.
[30] Classical Hall effect in scanning gate experiments: A. Baumgartner et al., Phys. Rev. B 74, 165426 (2006)