簡易檢索 / 詳目顯示

研究生: 傅美惠
論文名稱: 鑽石銀基複合材料熱性質之研究
Study on Thermal Properties of Diamond/Ag Composites
指導教授: 林樹均
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: 複合材料無電鍍大氣熱壓熱傳導係數熱膨脹係數
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗是以無電鍍後得到表面銀被覆的鑽石顆粒,加以大氣熱壓的鑽石銀基複材,研究探討其熱膨脹、熱傳導、硬度等性質,以評估此複合材料在電子構裝熱材的應用潛力。無電鍍是一種化學電鍍法,利用化學氧化還原使銀還原鍍覆在鑽石顆粒表面,如此可增加銀在鑽石顆粒間的分散性;大氣熱壓的參數為600 oC,500 MPa,時間為30分鐘,得到鑽石體積含量10、20、30、40、60 %的複材,並以不同大小的鑽石顆粒製成不同體積比含量的複材,觀察其關係。
    Diamond/Ag複材的性質量測顯示:硬度隨著鑽石添加量的增加而上升,達到散佈強化的效果;在熱膨脹係數(Coefficient of Thermal Expansion)方面,CTE隨著強化材含量增加而減小,且與鑽石顆粒大小沒有關係,當強化材體積比含量為60 %時,CTE達到6 ppm/K,符合電子構裝散熱材所希望達到範圍內的值(2-7 ppm/K);熱傳導性質,隨著鑽石顆粒尺寸變大,表面積減少,熱傳導係數上升;而鑽石含量增加,複材熱傳導係數下降,但20 vol% Diamond/Ag仍有420 W/m•K。整個說來,以此法製造Diamond/Ag複材,製程設備便宜,硬度跟CTE都有隨著鑽石添加而改善性質。


    壹、前言 貳、文獻回顧 2-1散熱的重要性 2-2散熱封裝材料概況 2-2.1傳統封裝散熱材料 2-2.2先進散熱材料 2-3金屬基複合材料之理論性質 2-4無電鍍簡介 2-4.1無電鍍原理 2-4.2無電鍍銀 參、實驗方法與步驟 3-1實驗設計與流程 3-2無電鍍銀 3-3大氣熱壓 3-4複合材料性質分析 3-4.1金相觀察 3-4.2緻密度量測 3-4.3硬度測試 3-4.5熱膨脹係數量測 3-4.6熱傳導係數量測 肆、結果與討論 4-1無電鍍銀 4-1.1鑽石尚未鍍著銀膜前之表面型態觀察 4-1.2鑽石粉無電鍍銀膜 4-2大氣熱壓複材 4-2.1複合材料微結構觀察 4-2.2 成份及含量鑑定 4-3鑽石銀基複材性質量測 4-3.1緻密度 4-3.2硬度 58 4-3.3熱膨脹性質 4-3.4熱傳導性質 伍、結論 73 陸、參考文獻

    1. J. Markoff, “Intel’s Big Shift After Hitting Technical Wall”, New York Times, May 17, 2004.
    2. Carl Zweben, “New, Ultrahigh-Thermal-Conductivity Packaging Materials”, IEEE Components, Packaging & Manufacturing Technology Society - Santa Clara Valley Chapter, March 16, 2005 Sunnyvale, California
    3. G. L. Romero, J. M. Fusaro, and J. L. Martinez, “ Metal Matrix Composite Powder Modules : Improvements in Reliability and Package Integration”, IAS 95, Conference Record of the 1995 IEEE Industry Application Conference. Thirtieth IAS Annual Meeting, Vol. 1, pp. 916-922
    4. A. Kelly and C. Zewben, Eds., Comprehensive Composite Materials, Pergamon Press, Oxford, 2000.
    5. K. A. Schmidt and C. Zewben, “Advanced Composite Packaging Materials”, Electronic Materials Handbook, ASM International, Materials Park, Ohio, 1989.
    6. D. D. L. Chung and C. Zewben, “Composites for Electronic Packaging and Thermal Management”, Comprehensive Composite Materials, A. Kelly and C. Zewben, Eds., 6: Design and Applications, Pergamon Press, Oxford, 2000.
    7. C. Zweben, “Thermal Management and Electronic Packaging Applications”, ASM Handbook, Volume 21, Composites, ASM International, Materials Park, Ohio, pp.1078-1084, 2001.
    8. C. Zweben, “Electronic Packaging: Heat Sink Materials”, Encyclopedia of Materials: Science and Technology, K. H. J. Buschow, et al., Editors-in-Chief, Elsevier Science, Oxford, 3, pp. 2676-83, 2001.
    9. T. F. Fleming, C. D. Levan, and W. C. Riley, “Applications for Ultra-High Thermal Conductivity Fibers”, Processings of the International Electronic Packaging Conference, Wheaton, IL, International Electronic Packaging Society, 1995, pp. 493-503.
    10. J. W. Klett and T. D. Burchell, “High Thermal Conductivity Mesophase Pitch-derived Carbon Foams,” Proceedings, 43rd International SAMPE Symposium, May 31-June4, Anaheim, CA, 1998.
    11. I. Golecki, et al., “Properties of High Thermal Conductivity Carbon-Carbon Composites for Thermal Management Applications”, Proceedings of the 1998 High Temperature Electronic Materials, Devices and Sensors Conference, San Diego, CA, published by the IEEE, pp.190-195,1998.
    12. Thaw, J. Zemany and C. Zweben, “Metal Matrix Composites for Microwave Packaging Components”, Electronic Packaging and Production, pp. 27-29, August 1987.
    13. J. Norley, “Natural Graphite Based Materials for Electronics Cooling”, Proceedings, IMAPS Advanced Technology Workshop on Thermal Management, Palo Alto, California, October 25-27, 2004.
    14. C. Zweben, “High Performance Thermal Management Materials”, Electronics Cooling, Vol. 5, No. 3, pp. 36-42, 1999
    15. Carl Zweben, “Ultrahigh-Thermal-Conductivity Packaging Materials”, 21st IEEE SEMI-THERM Symposium
    16. C. Zweben, Mechanical Engineering’ Handbook, 2nd ed., ed. M. Kuntz (New York: John Wiley & Sons, 1998)
    17. D. M. Jacobson and S. P. S. Sangha, “Novel Low Expansion Packages for Electronics”, The GEC Journal of Technology, Vol. 14, No. 1, pp. 48-52, 1997
    18. J. F. Silvain, Y. Le Petitcorps, E. Sellier, P. Bonniau and V. Heim, ” Elastic Moduli, Thermal Expansion and Microstructure of Copper-Matrix Composite Reinforced by Continuous Graphite Fibres”, Composites, Vol. 25, 1994, pp. 570-574
    19. I. Dutta, “Role of Interfacial and Matrix Creep During Thermal Cycling of Continuous Fiber Reinforced Metal–Matrix Composites”, Acta Materialia, Volume 48, Issue 5, 14 March 2000, pp. 1055-1074
    20. M. Vedula, R. N. Pangborn and R. A. Queeney, “Fibre Anisotropic Thermal Expansion and Residual Thermal Stress in a Graphite/Aluminium Composite”, Composites, Vol. 25, January 1988, pp. 55-60
    21. J. F. Silvain, Y. Le Petitcorps, E. Sellier, P. Bonniau and V. Heim, “Elastic Moduli, Thermal Expansion and Microstructure of Copper-Matrix Composite Reinforced by Continuous Graphite Fibres”, Composites, Vol. 25, 1994, pp. 570-574
    22. B. K. Hwu, S. J. Lin, and M. T. Jahn, “The Interfacial Compounds and Sem Fractography of Squeeze-Cast SiCp/6061 Al Composites”, Materials Science and Engineering, A206, 1996, pp.110-119
    23. O. Ottinger and R. F. Singer, “An Advanced Melt Infiltration Process for the Net Shape Production of Metal Matrix Composites”, Z. Metallkde, Vol. 84, 1993, Iss12, pp. 827-831
    24. A. J. Cook and P. S. Weerner, ”Pressure Infiltration Casting of Metal Matrix Composites”, Materials Science and Engineering, A144, 1991, pp. 189-206
    25. M. F. Amateau, “Progress in the Development of Graphite-Aluminum Composites Using Liquid Infiltration Technology”, J. Composites Materials, Vol. 10,1976, pp.279-296
    26. D. Muscat, K. Shanker and A. L. Drew, “Al/TiC Composites Produced by Melt Infiltration”, Materials Science and Technology, Vol. 8, 1992, pp.971-976
    27. M. K. Aghajanian, M. A. Rocazelle, J. T. Burke, and S. D. Keck, “The Fabrication of Metal Matrix Composites by a Pressureless Infiltration Technique”, J. Materials Science, Vol.26, 1991, pp. 447-454
    28. R. M. German, K. F. Hens, and J. L. Johnson, “Powder metallurgy Processing of Thermal Management Materials for Microelectronic Applications”, The International Journal of Powder Metallurgy, Vol. 30, No. 2, 1994, pp. 205-215
    29. J. Hashin and S. Shtrikman, “A Variational Approach to the Theory of Elastic Behavior of Multiphase Materials”, J. Mech. Phys.: Solids, Vol. 11, 1963, pp. 127-140
    30. P. S. Turner, “Thermal Expansion Stresses in Reinforces Plastics”, J. Res. NBS, Vol. 37, 1946, p. 239
    31. E. H. Kerner, “The Elastic and Thermoelastic Properties of Composite Media”, Proc. Phys. Soc., Vol. 68B, 1956, p. 808
    32. T. T. Wang and T. K. Kwei, J. Polymer Sci., Vol. 7, 1969, p. 889
    33. R. R. Tummala and A. L. Friedberg, “Composites, Carbides. Thermal Expansion of Composite Material”, J. Appl. Phys., Vol. 41, 1970, pp. 5104-5107
    34. R. A. Schapery, “Thermal Expansion Coefficients of Composite Materials Based on Energy Principles”, J. Comp. Mater., Vol. 2, 1968, pp. 380-404
    35. A. A. Fahmy and A. N. Ragai, “Thermal-Expansion Behavior of Two-Phase Solids”, J. Appl. Phys., Vol. 41, No. 13, 1970, pp. 5108-5111
    36. R. M. German, “A Model for the Thermal Properties of Liquid-Phase Sintered Composites”, Metallurgical Transactions A, Vol. 24A, 1993, pp.1745-1752
    37. D. P. H. Hasselman and K. Y. Donaldson, “Effect of Reinforcement Particle Size on the Thermal Conductivity of a Particulate-Silicon Carbide-Reinforced Aluminum Matrix Composite”, J. Am. Ceram. Soc., Vol. 75, No. 11, 1992, pp. 3137-3140
    38. A. G. Every, Y. Tzou, D. P. H. Hasselman and R. Raj, “The Effect of Particle Size on the Thermal Conductivity of ZnS/Diamond Composites”, Acta Metall. Mater., Vol. 40, No. 1, 1992, pp. 123-129
    39. L. Rayleigh, “On the Influence of the Obstacles Arranged in Rectangular Order upon the Properties of a Medium”, Phil. Mag., Vol. 34, 1892, pp. 481-502
    40. D. P. H. Hasselman and L. F. Johnson, “Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance”, J. Comp. Mater., Vol. 21, No. 5, 1987, pp. 508-515
    41. J. C. Maxwell, A Treatise on Electricity and Magnetism, 1, 3rd ed. Oxford University Press, Oxford, U. K., 1904
    42. Y. Benvensite, “Effective Thermal Conductivity of Composites with a Thermal Contact Resistance between the Constituents : Nondilute case”, J. Appl. Phys., Vol. 61, 1987, pp. 2840-2843
    43. J. C. Y. Koh and A. Fortini, “Prediction of Thermal Conductivity and Electrical Resistivity of Porous Metallic Materials”, International Journal of Heat and Mass Transfer, Vol. 16, 1973, pp. 2013-2022
    44. V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P. K. Vasuder, and C. H. Ting, “Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration”, J. Electrochem. Soc., 144(1997) pp.898-908
    45. A. Szasz, D. J. Fabian, Z. Paal, and J. Kojnok, “Chemical Mechanism in Electroless Deposition: A Study on the Role of Hydrogen in Formation”, J. Non-Crystal Solid, Vol. 13, 1988, 21-23
    46. 神戶得藏著,莊萬發譯, “無電鍍金:化學鍍金術”, 復漢出版社,1999
    47. J. Dugasz and G. J. Shawhan, “Factors Affecting the Adhesion of Electroless Coating”, Surface Coating Technol., Vol. 58, 1993, pp. 57-62
    48. S. G. Warrier and R. Y. Lin, “Control of Interface in Al-C Fiber Composites”, J. Mater. Sci., Vol. 28, No. 3, 1993, pp. 760-780
    49. http://www.factdiamond.com/technical/index.htm
    50. Metals Handbook, “Properties and Selection Nonferrous Alloys and Special-Purpose Materials”, Vol.2 Tenth Edition
    51. 許哲豪,“SiCp/Ag電接觸複合材料性質研究”,清華大學, 1998
    52. S. K. Bhaumik, G. S. Upadhyaya, and M. L. Vaidya, Int. J. Refractory Met. & Hard Mat., 11, 9(1992)
    53. Katsuhito Yoshida, Hideaki Morigami, “Thermal Properties of Diamond/Copper Composite Material”, Microelectronics Reliability, Vol. 44, 2004, pp.303-308
    54. K. Hanada, K. Matsuzaki, T. Sano, “Thermal Properties of Diamond Particle-Dispersed Cu Composites”, Journal of Materials Processing Technology, 2004, pp. 514-518
    55. D. P. H. Hasselman, Kimberly Y. Donaldson, Jen Liu, Ludwig J. Gauckler, and P. Darrell Ownby, “Thermal Conductivity of a Particulate-Diamond-Reinforced Cordierite Matrix Composite”, J. Am. Ceram. Soc., Vol. 77, pp. 1757-1760 (1994)
    56. R. J. Stoner and H. J. Maris, “Measurements of the Kapitza Conductance between Diamond and Several Metals”, Physical Review Letters, Vol.68, No.10, pp. 1563-1566
    57. P.W. Ruch , O. Beffort , S. Kleiner , L. Weber , P.J. Uggowitzer, “Selective Interfacial Bonding in Al(Si)-Diamond Composites and Its Effect on Thermal Conductivity”, Composites Science and Technology, Vol.66, pp. 2677–2685 (2006)
    58. O. Beffort , L. Weber , P. Ruch , U.E. Klotz , S. Meier , S. Kleiner, “Interface Formation in Infiltrated Al(Si)/Diamond Composites”, Diamond & Related Materials, Vol. 15, pp. 1250–1260 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE