研究生: |
賴柏辰 Lai, Po-Chen |
---|---|
論文名稱: |
混合式輻射遷移計算應用於用過核子燃料乾式貯存屏蔽分析的研究 Studies on Hybrid Deterministic/Monte Carlo Calculations in Shielding Analysis of Spent Nuclear Fuel Dry Storage |
指導教授: |
許榮鈞
Sheu, Rong-Jiun |
口試委員: |
蔡惠予
Tsai, Hui-Yu 劉鴻鳴 Liu, Hong-Ming 張似瑮 Chang, Szu-Li 林威廷 Lin, Uei-Tyng |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 混合式輻射遷移計算 、用過核子燃料 、乾式貯存 、屏蔽分析 、輻射遷移途徑 |
外文關鍵詞: | Hybrid transport calculation, Spent nuclear fuel, Dry storage, Shielding analysis, Radiation transport pathway |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
混合式輻射遷移計算可結合決定論法與蒙地卡羅法的優點,是目前公認對於困難輻射屏蔽問題最佳的解決方案。本研究著重於探討混合式遷移計算在用過核子燃料乾式貯存屏蔽分析的應用,一系列的研究獲致二項重要成果:(1)針對二套主流的混合式遷移程式MAVRIC序列與ADVANTG/MCNP耦合計算,證明二者的整體表現是一致的,不論是準確度或是其計算效率;(2)針對複雜的輻射屏蔽問題,建構一套可有效區分不同輻射遷移途徑之貢獻的計算方法。第一項成果透過一個詳細的乾貯護箱表面劑量計算來呈現,第二項成果則透過一個大型複雜的室內乾貯設施周遭輻射場特性分析來呈現。
第一部分:針對核二廠的MAGNASTOR護箱案例,本研究有系統地檢視MAVRIC與ADVANTG/MCNP二套程式在護箱表面劑量率計算的準確度與效率,結果顯示兩套程式皆能有效地大幅加速整體計算,特別是在加馬射線的深穿透計算上,而且二者可達到的加速幅度相當接近。另外,MAVRIC (CE)與ADVANTG/MCNP雖然皆使用同樣來源的ENDF連續能量截面,前者仍低估護箱側邊中子劑量率約30 %,此一差異經深入探討證實是來自兩程式預設對於混凝土中的氫採用之S(,)處理不一致所致。修正此一差異後,本研究證實MAVRIC與ADVANTG/MCNP二者在計算準確度與效率接近等價,澄清文獻中許多混淆不清的二者差異討論。
第二部分:利用MAVRIC程式探討大型集中式貯存設施周遭輻射場的特性,參考並改進文獻中針對高能加速器引發之中子天空散射的計算模式,本研究建構了一套可有效區分下列不同輻射遷移途徑的分析方法:直接穿透、輻射滲流、天空散射、地面散射、多次散射。此一方法擴展了傳統蒙地卡羅計算的限制,不同輻射途徑的劑量貢獻可直接指出屏蔽加強的最有效方向與其最佳化。此一區分不同輻射遷移途徑分析方法的應用,並不僅限於用過核子燃料乾貯設施,亦可應用於其他輻射設施的屏蔽分析。
Hybrid transport calculations combine the advantages of deterministic and Monte Carlo methods and can make a challenging Monte Carlo shielding simulation computationally feasible and practical. Based on the consistent adjoint driven importance sampling (CADIS) methodology, ADVANTG/MCNP and MAVRIC are two widely used code systems in this area. This study applied the hybrid method to investigate the radiation field around spent fuel dry cask storage facilities, which involve various computational challenges, including multiple sources, complicated geometries, deep penetration, radiation streaming, and skyshine. The presentation was divided into two parts.
The first part described a real-world cask shielding problem and presented a systematic comparison of the two hybrid code systems that were used to solve it. Compared with the continuous-energy ADVANTG/MCNP calculations, the coarse-group MAVRIC calculations underestimated the neutron dose rates on the cask’s side surface by an approximate factor of two and slightly overestimated the dose rates on the cask’s top and side surfaces for fuel gamma and hardware gamma sources because of the impact of multigroup approximation. The fine-group MAVRIC calculations improved to a certain extent and the addition of continuous-energy treatment to the Monte Carlo code in the latest MAVRIC sequence greatly reduced these discrepancies. For the two continuous-energy calculations of ADVANTG/MCNP and MAVRIC, a remaining difference of approximately 30% between the neutron dose rates on the cask’s side surface resulted from inconsistent use of thermal scattering treatment of hydrogen in concrete. After this inconsistency had been solved, the ADVANTG/MCNP and MAVRIC exhibited excellent agreement in predicting dose rates on the cask’s surfaces and similar performance in terms of computational efficiency.
The second part dealt with how to separate neutron and gamma-ray contributions from multiple transport pathways including direct, streaming, skyshine, groundshine, and multishine. A modified version of the method that was originally developed by Oh et al. (2016) for the evaluation of neutron skyshine from a high-energy electron accelerator was proposed. The application of the methodology was demonstrated in this study and the flux/dose contributions of individual pathways were examined and compared. The results provided additional insight into how the radiation propagated from the source to off-site locations. The modified method for separating five transport pathways can provide valuable information for shielding optimization during the design phase and is generally applicable to Monte Carlo shielding analyses of other nuclear facilities.
[1] 行政院原子能委員會, “用過核子燃料乾式貯存的安全管理”, https://www.aec.gov.tw/ (Accessed 31 July, 2022)
[2] 台灣電力股份有限公司, “用過核子燃料乾式貯存”, https://www.taipower.com.tw/tc/index.aspx (Accessed 31 July, 2022)
[3] 行政院原子能委員會, “核能電廠用過核子燃料貯存表”, https://www.aec.gov.tw/u/v/2pa (Accessed 31 July, 2022)
[4] 台灣電力股份有限公司, “台電公司核一廠用過核子燃料乾式貯存設施設置安全分析報告”, 2008.
[5] 台灣電力股份有限公司, “台電公司核二廠用過核子燃料乾式貯存設施設置安全分析報告”, 2015.
[6] IAEA, “Nuclear Technology Review 2017”, GC(61)/INF/4, 2017.
[7] IAEA, “List of Nuclear Fuel Cycle Facilities,” https://infcis.iaea.org/NFCIS/Facilities (Accessed 31 July, 2022)
[8] NAC International, “NAC’S MAGNASTOR® - Patented Dry Cask Storage Excellence”, https://www.nacintl.com/solutions/storage-technologies/magnastor (Accessed 31 July, 2022)
[9] Holtec International, “Final Safety Analysis Report for the HI-STORM 100 Cask System”, Docket No. 72-1014, Rev. 13, 2016.
[10] Holtec International, “Final Safety Analysis Report for the HI-STAR 100 Cask System”, Docket No. 72-1008, Rev. 3, ML093070147, 2009.
[11] AREVA, “NUHOMS HD Horizontal Modular Storage System for Irradiated Nuclear Fuel Safety Analysis Report”, Rev. 0, 4/04, ML041540170.
[12] RFS Company, “Metal Cask Storage Schedule of Recyclable Fuel Storage Center in Mutsu”, 2010.
[13] GNS, “CASTOR® V/52”, https://www.gns.de/language=en/21553/castor-v-52 (Accessed 31 July, 2022)
[14] 許榮鈞、江祥輝和賴柏辰, “除役核電廠用過核燃料室內乾式貯存之輻射屏蔽管制技術研析”, 105FCMA009 期末報告, 2017
[15] 許榮鈞和賴柏辰, “室內乾貯設施建物型式與貯存護箱類型之輻射屏蔽評估研究”, 109FCMA001 期末報告, 2020
[16] H. Pan, “Sizewell B Dry Fuel Storage Project,” September, 2019
[17] ZWILAG, “Cask Storage Hall”, https://www.zwilag.ch/en/cask-storage-hall-_content---1--1054.html (Accessed 31 July, 2022)
[18] Y. F. Chen, Y. F. Chiou, S. J. Chang, S. H. Jiang, and R. J. Sheu, “Effects of Source and Geometry Modeling on the Shielding Calculations for a Spent Nuclear Fuel Dry Storage Cask”, Nuclear Technology, 182, 224-234 (2013) (https://doi.org/10.13182/NT13-A16432)
[19] J.H. Ko, J.H. Park, I.S. Jung, G.U. Lee, C.Y. Baeg, and T.M. Kim, “Shielding Analysis of Dual Purpose Cask for Spent Nuclear Fuel under Normal Storage Conditions”, Nuclear Engineering and Technology, 46, 547-556 (2014) (https://doi.org/10.5516/NET.08.2013.039)
[20] H. Thiele & F.M. Börst, “Shielding Benchmark Calculations with SCALE/MAVRIC and Comparison with Measurements for the German Cask CASTOR HAW 20/28 CG”, Nuclear technology, 168, 867-870 (2009) (https://doi.org/10.13182/NT09-A9320)
[21] H. Thiele & F.M. Börst, “Shielding Calculations with SCALE/MAVRIC and Comparison with Measurements for the TN85 Cask with Vitrified High Level Radioactive Waste”, ICRS-13 & RPSD-2016, 2017. (https://doi.org/10.1051/epjconf/201715307017)
[22] Y. Gao, C. R. Hughes, C. R. Greulich, J. E. Tulenko, A. Enqvist, J. E. Baciak, “Radiation Dose Rate Distributions of Spent Fuel Dry Casks Estimated with MAVRIC Based on Detailed Geometry and Continuous-Energy Models”, Annals of Nuclear Energy, 117, 84-97 (2018) (https://doi.org/10.1016/j.anucene.2018.03.015)
[23] Y. Gao, N. J. McFerran, A. Enqvist, J. E. Tulenko, J. E. Baciak, “Dry Cask Radiation Shielding Validation and Estimation of Cask Surface Dose Rate with MAVRIC During Long-Term Storage”, Annals of Nuclear Energy, 140, 107145, (2020) (https://doi.org/10.1016/j.anucene.2019.107145)
[24] A. Šmaizˇys, P. Poškas, E. Narkunas, “Evaluation of Dose Rate Variation During Very Long Term Storage of RBMK-1500 Reactor Used Fuel”, Annals of Nuclear Energy, 109, 192-198, 2017 (https://doi.org/10.1016/j.anucene.2017.03.050)
[25] D. Grgić, M. Matijević, P. Dučkić, and R. Ječmenica, “Analysis of the HI-TRAC VW Transfer Cask Dose Rates for Spent Fuel Assemblies Loaded in Nuclear Power Plant Krsko Storage Campaign One”, ASME. ASME Journal of Nuclear Engineering and Raddiation Science, 8(4): 041902, (2022) (https://doi.org/10.1115/1.4051447)
[26] M. Munk & R. N. Slaybaugh, “Review of Hybrid Methods for Deep-Penetration Neutron Transport”, Nuclear Science and Engineering, 193, 1055-1089, (2019) (https://doi.org/10.1080/00295639.2019.1586273)
[27] Y. F. Chen, R. J. Sheu, S. H. Jiang, J. N. Wang, and U. T. Lin, “Surface Dose Rate Calculations of a Spent-Fuel Storage Cask by Using MAVRIC and Its Comparison with SAS4 and MCNP”, Nuclear Technology, 175: 1, 343-350, (2011) (https://doi.org/10.13182/NT11-A12306)
[28] G. Souza, T. Carluccio, P. Sanchez and A. Abe, “Neutron Flux Intercomparison and Ex-Core Neutron Detector Optimization in a SMR Reactor Using MCNP6 Code and MAVRIC Sequence”, 2019 International Nuclear Atlantic Conference - INAC 2019
[29] M. Matijević, R. Ječmenica, D. Grgić, “Spent fuel pool dose rate calculations using point kernel and hybrid deterministic-stochastic shielding methods”, Journal of Energy, 65, 151-161, (2016) (https://doi.org/10.37798/2016651-2138)
[30] P.K. Paul, “Dose rate evaluation for the ES-3100 package with HEU content using MCNP, ADVANTG, Monaco, and MAVRIC”, Nuclear Technology, 205, 847-866, (2019) (https://doi.org/10.1080/00295450.2018.1533319)
[31] K. Shultis, “Hybrid Skyshine Calculations for Complex Neutron and Gamma-Ray Sources”, Nuclear Science and Engineering, 136, 294-304, (2000) (https://doi.org/10.13182/NSE00-A2160)
[32] G. Radulescu, T. M. Miller, K. Banerjee, D. E. Peplow, “Detailed SCALE dose rate evaluations for a consolidated interim spent nuclear fuel storage facility” Transactions of the American Nuclear Society, 118, 765-768, (2018)
[33] X. Campo, R. Méndez, M. Embid, A. Ortego, M. Novo, J. Sanz, “Neutron field characterization at the independent spent fuel storage installation of the Trillo nuclear power plant”, Applied Radiation and Isotopes, 135, 33-39, (2018) (https://doi.org/10.1016/j.apradiso.2018.01.002)
[34] J. H. Oh, N. S. Jung, and H. S. Lee, “New Estimation Method of Neutron Skyshine for a High-Energy Particle Accelerator”, Journal of the Korean Physical Society, 69, 1057-1064, (2016) (https://doi.org/10.3938/jkps.69.1057)
[35] T. T. Liang, J. C. Liu, and S. H. Rokni, “Evaluation of Skyshine from an Accelerator Facility: Dependence on Distance and Angle,” Health Physics, 118, 647-655, (2020) (https://doi.org/10.1097/HP.0000000000001161)
[36] 陳昂佑, “伴隨函數用於蒙地卡羅計算法變異數降低技巧之建立與應用”, 國立清華大學工程與系統科學系博士論文, 2008.
[37] J. C. Wanger and A. Haghighat, “Automated Variance Reduction of Monte Carlo Shielding Calculations Using the Discrete Ordinates Adjoint Function”, Nuclear Science and Engineering, 128, 186-208, (1998) (https://doi.org/10.13182/NSE98-2)
[38] A. Haghighat and J. C. Wagner, “Monte Carlo Variance Reduction with Deterministic Importance Functions”, Progress in Nuclear Energy, 42, 1, 25-53, (2003) (https://doi.org/10.1016/S0149-1970(02)00002-1)
[39] J. C. Wagner, E. D. Blakeman, and D. E. Peplow, “Forward-Weighted CADIS Method for Global Variance Reduction”, Transactions of the American Nuclear Society, 97, 630-633, (2007)
[40] D. E. Peplow, “MAVRIC: Monaco with Automated Variance Reduction Using Importance Calculation”, ORNL/TM-2005/39, Version 6.1, Sect. S6, June, 2011.
[41] J. C. Wagner, D. E. Peplow, and S. W. Mosher, “FW-CADIS Method for Global and Regional Variance Reduction of Monte Carlo Radiation Transport Calculations”, Nuclear Science and Engineering, 176, 37-57, (2014) (https://doi.org/10.13182/NSE12-33)
[42] J. C. Wagner, E. D. Blakeman, and D. E. Peplow, “Forward-Weighted CADIS Method for Variance Reduction of Monte Carlo Calculations of Distributions and Multiple Localized Quantities”, presented at the M&C 2009 N.Y, (2009)
[43] ORNL, “Scale: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design”, ORNL/TM-2005/39, Version 6.1, June, 2011.
[44] ORNL, “SCALE Code System”, ORNL/TM-2005/39, Version 6.2.2, February, 2017.
[45] D. E. Peplow, “MONACO: A Fixed-Source, Multi-Group Monte Carlo Transport Code for Shielding Applications”, ORNL/TM-2005/39, Version 6.1, Sect. F23, June, 2011.
[46] S. W. Mosher et al., “ADVANTG-An Automated Variance reduction Parameter Generator”, ORNL/TM-2013/416, Rev. 1, Oak Ridge National Laboratory, August, 2015.
[47] X-5 MONTE CARLO TEAM, “MCNP - Version 5, Vol. I: Overview and Theory”, LA-UR-03-1987, Los Alamos National Laboratory report, 2003.
[48] E. D. Blakeman, D. E. Peplow, J. C. Wagner, B. D. Murphy, and D. E. Mueller, “PWR Facility dose Modeling using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology”, ORNL, September, 2007
[49] J. M. Risner and E. D. Blakeman, “Analysis of DPA Rates in the HFIR Reactor Vessel Using a Hybrid Monte Carlo/Deterministic Method”, ORNL, 2016. (https://doi.org/10.1051/epjconf/201610603003)
[50] A. Ibrahim et al., “ITER Neutronics Modeling Using Hybrid Monte Carlo/Deterministic and CAD-Based Monte Carlo Methods”, Nuclear technology, 175, 251-258 (2011) (https://doi.org/10.13182/NT175-251)
[51] M. W. Shaver, E. A. Miller, R. S. Wittman, and B. S. McDonald, “Transport Test Problems for Hybrid Methods Development”, PNNL-21026, December, 2011
[52] C. J. Werner Ed., “MCNP User’s Manual-Code Version 6.2”, LA-UR-17-29981, Los Alamos National Laboratory, 2017.
[53] P. C. Lai, Y. S. Huang, and R. J. Sheu, “Comparing the Performance of Two Hybrid Deterministic/Monte Carlo Transport Codes in Shielding Calculations of a Spent Fuel Storage Cask”, Nuclear Engineering and Technology, 51, 2018-2025, 2019. (https://doi.org/10.1016/j.net.2019.06.019)
[54] P. C. Lai & R. J. Sheu, “Separation of Flux/Dose Contributions from Multiple Transport Pathways in Monte Carlo Shielding Analyses of a Consolidated Interim Spent Nuclear Fuel Storage Facility”, Nuclear Technology, 208, 723-734, 2022. (https://doi.org/10.1080/00295450.2021.1938486)
[55] 江祥輝和許榮鈞, “用過核子燃料輻射屏蔽技術研究”, 行政院原子能委員會委託研究計劃, 2010
[56] International Commission on Radiological Protection, “Conversion Coefficients for Use in Radiological Protection Against External Radiation”, ICRP Publication 74, Ann. ICRP 26 (3/4), 1996.
[57] IAEA, Evaluated Nuclear Data File (ENDF), https://www-nds.iaea.org/ exfor/endf.htm (Accessed 31 July, 2022)
[58] 許榮鈞等人, “精進用過核燃料室內乾式貯存設施安全審查技術之研究”, 期末報告, 2018
[59] 台灣電力股份有限公司, ”核能一廠除役計畫環境影響評估報告書”, 2019
[60] R. J. Sheu, Y. F. Chen, S. H. Jiang, J. N. Wang, and U. T. Lin, “Dose Evaluation for an Independent Spent-Fuel Storage Installation Using MAVRIC”, Nuclear Technology, 175, 335-342, (2011) (https://doi.org/10.13182/NT11-A12305)