簡易檢索 / 詳目顯示

研究生: 葉雅琪
Yen Ya Chi
論文名稱: 一個雙核心Brusselator反應模型之倍增週期分歧問題探討
Numerical Investigation for the Periodic Doubling Bifurcation Problems of A Brusselator Reaction Model with Two Cells
指導教授: 簡國清
Jen Kuo Ching
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 158
中文關鍵詞: 分歧點打靶法Rung-Kutta積分法隱函數定理虛擬弧長延拓法牛頓迭代法解路徑倍增週期分歧點
外文關鍵詞: Bifurcation point, Shooting method, Rung-Kutta method, Implicit function theorem, Pseudo-arclength continuation method, Newton's interative method, Solution branches, Periodic-doubling bifurcation points
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論將針對一個雙核心Brusselator反應模型之倍增週期分歧問題進行探討.
    首先,我們利用打靶法及牛頓迭代法計算出倍增週期分歧點.接著,我們以隱函數定理為基礎,運用Liapunov-Schmidt降階法、虛擬弧長延拓法、割線預測法及牛頓迭代法等數值方法,延拓出倍增週期分歧點的單週期及倍週期解分支路徑.


    In this thesis, we will be aimed at investigating the periodic doubling bifurcation problems of a Brusselator reaction model with two cells.
    First, we use shooting method and interative method to compute the periodic-doubling bifurcation points.Also,we use implicit function theorem as a basis and apply the numerical methods of the Liapunov-Schmidt reduction method, pseudo-arclength continuation method, secant-predictor method, and interative method, to continue periodic and periodic-doubling solution branches from periodic-doubling bifurcation points.

    第一章 緒論………………………………………………………1 第二章 分歧理論與虛擬弧長延拓法…………………………… 3 2.1 分歧問題………………………………………………………… 3 2.2 隱函數定理與分歧理論………………………………………… 5 2.3 局部延拓法……………………………………………………… 7 2.4 虛擬弧長延拓法………………………………………………… 9 第三章 倍增週期分歧問題的數值解法………………………… 11 3.1 倍增週期分歧點的數值解法 …………………………………… 11 3.2 選取過倍增週期分歧點的單週期解解分支延拓方向 ………… 35 3.2.1 Liapunov-Schmidt降階法 ……………………………… 35 3.2.2 選取單週期解解分支之延拓方向 ……………………… 42 3.2.3 選取單週期解解分支延拓方向的初始猜值 …………… 46 3.3 過倍增週期分歧點的單週期解分支的延拓 …………………… 47 3.3.1 虛擬弧長延拓法之數值計算 …………………………… 47 3.3.2 割線預測法與牛頓迭代法求單週期解解路徑 ………… 49 3.4 過倍增週期分歧點的倍週期解分支延拓方向與路徑 ………… 50 3.5 演算法 …………………………………………………………… 51 第四章 數值實驗………………………………………………… 58 4.1實驗(一)…………………… 63 4.2實驗(二 …………………… 80 4.3實驗(三)…………………… 99 4.3實驗(四)…………………… 116 4.5實驗(五)…………………… 135 第五章 結論……………………………………………………… 154 參考文獻 ……………………………………………………… 156

    [1] Atkinson, K.E., The numerical solution of bifurcation problems' SIAM J. Numer, Anal., 14(4), pp.584-599, 1977.
    [2] Allgower E.L. and Chien C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput, 7, pp.1265-1281, 1986.
    [3] Brezzi, F. ,Rappaz, J. and Raviart, P.A., Finite dimensional approximation of a bifurcation problems, Numer.Math., 36, pp.1-25, 1980.
    [4] Brown, K.J., Ibrahim, M,M.A. and Shivaji, R., S-Shaped bifurcation curves, Nonlinear Analysis, T.M.A, 5, pp.475-486, 1981.
    [5] Crandall, M.G. and Rabinowitz, P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971.
    [6] Crandall, M.G. and Rabinowitz, P.H., Bifurcation, Perturbation of Simple Eihenvalues, and Linearized Stability, Archive for rational Mech. Analysis, 52, pp.161-180, 1973.
    [7] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press,New York, pp.1-35, 1977.
    [8] Crandall, M. G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, 1979.
    [9] Castro, A and Shivaji, R., Uniqueness of positive solution for a class of elliptic boundary value problems, Proc. R. Soc. Edinb.98A, pp.267-269, 1984.
    [10] Iooss, G and Joseph, D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, 1989.
    [11] Jepson A.D. and Spence A., Numerical Methods for Bifurcation Problems, State of the Art in NUmeriacI Analysis, edit bu A, lserles, MJD Powell, 1987.
    [12] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, 1987
    [13] Keller, H.B. and Langford, W.F., Iterations, perturbations and multiplicities for non-linear bifurcation problems, Arch. Rational Mech. Anal., 48, pp.83-108, 1972.
    [14] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384, 1977..
    [15] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York. 1983.
    [16] Kupper, T., Mittelmann, H. D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel, 1984.
    [17] Lions, P.L., On the existence of positive solutions of semilinear elliptic equation, SIAM Rev., 24, pp.441-467, 1983.
    [18] Rheinboldt, W. C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley (New York).
    [19] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp. 221-237, 1980.
    [20] Shivaji, R., Remarks on an S-shaped bifurcation curve, J. Math. Analysis Applic., III, pp.374-387, 1985.
    [21] Shivaji, R., Uniqueness result for a class of postione problems, Nonlinear Analysis: theory, methods and application, 7, pp.223-230, 1983.
    [22] Wang, S.H., On S-Shaped Bifurcation curves, Nonlinear Analysis: theory, methods and application, 22, pp.1475-1485, 1994.
    [23] Wacker, H.(ed-), Continuation Methods, Academic Press, New York, 1978.
    [24] 張定華, 非線性常微分方程週期倍增分歧問題之數值探討, 新竹教育大 學碩士論文, 2005.
    [25] 陳宏傑, Lorenz模型週期解路徑之分歧問題探討, 新竹教育大學碩士論文, 2007.
    [26] Csaba H s, Alan Champneys and László Kullmann, Bifurcation analysis of surge and rotating stall in the Moore–Greitzer compression system, IMA Journal of Applied Mathematics 68(2):205-228, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE