簡易檢索 / 詳目顯示

研究生: 劉伊芸
Liu, I-Yun
論文名稱: 利用多孔性陽極氧化鋁製備鐵鉑奈米網狀結構
Fabrication of FePt Network Nanostructures with porous anodic aluminum oxide
指導教授: 賴志煌
Lai, Chih-Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 87
中文關鍵詞: 陽極氧化鋁鐵鉑合金奈米結構
外文關鍵詞: AAO, FePt, nanostructure
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • L10-FePt with different nanostructures has attracted great interest in recent years because of their applications in many regions. However, a much higher ordering temperature for patterned FePt nanostructures than that of a continuous FePt thin film remains an open issue. In this work, the promising method is demonstrated to obtain the large-area L10 FePt with network nanostructures as well as perpendicular magnetic anisotropy at low ordering temperature (T < 400℃) by plasma etching with the mask of porous anodic aluminum oxide (AAO). The AAO mask is directly fabricated on L10 FePt thin films by anodizing the Al film. The microstructure of network FePt was observed, which is almost the same as that of the AAO mask. The mean pore diameter of FePt network is slightly smaller than the AAO mask, and the density is 4 × 1010 cm-2. The out-of-plane coercivity (Hc⊥) for network FePt is enhanced by 20 % larger than that for a continuous film. The pores act as the pinning sites for the domain walls. Therefore, the FePt film with a network structure as well as perpendicular anisotropy can be fabricated easily by AAO, which provides a new way to pattern magnetic films and benefits to the applications.


    CONTENT III FIGURE CONTENT IV TABLE CONTENT VIII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 BACKGROUND 3 2.1 FABRICATION OF ORDERED MAGNETIC NANOSTRUCTURES 3 2.2 INTRODUCTION OF AAO 13 2.3 PROPERTIES OF FEPT 33 2.4 POROUS ARRAYS OF MAGNETIC NANOSTRUCTURE 35 CHAPTER 3 EXPERIMENT 39 3.1 EXPERIMENT FLOWCHART 39 3.2 SAMPLE PREPARATION 40 3.3 CHEMICAL LISTS 43 3.4 ANALYSIS TECHNIQUE 44 CHAPTER 4 RESULT AND DISCUSSION 50 4.1 MULTI-STEP ANODIZATION 50 4.2 TITANIUM OXIDE NANODOTS 51 4.3 HIGH VOLTAGE ANODIZATION 55 4.4 FABRICATED AAO ON FEPT 58 4.5 ETCHING FEPT NETWORK 68 CHAPTER 5 CONCLUSION 84 REFERENCE 85

    1 G. A. Prinz, Physics Today 48, 58-63 (1995).
    2 M. N. Baibich, J. M. Broto, A. Fert, F. N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Physical Review Letters 61, 2472-2475 (1988).
    3 S. S. P. Parkin, R. Bhadra, and K. P. Roche, Physical Review Letters 66, 2152-2155 (1991).
    4 S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413-415 (1994).
    5 J. F. Smyth, S. Schultz, D. Kern, H. Schmid, and D. Yee, Journal of Applied Physics 63, 4237-4239 (1988).
    6 P. B. Fischer and S. Y. Chou, Applied Physics Letters 62, 2989-2991 (1993).
    7 R. M. H. New, R. F. W. Pease, and R. L. White, Journal of Vacuum Science & Technology B 12, 3196-3201 (1994).
    8 W. Xu, J. Wong, C. C. Cheng, R. Johnson, and A. Scherer, Journal of Vacuum Science & Technology B 13, 2372-2375 (1995).
    9 D. Streblechenko and M. R. Scheinfein, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 16, 1374-1379 (1998).
    10 J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, Journal of Magnetism and Magnetic Materials 256, 449-501 (2003).
    11 R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, Physical Review Letters 83, 1042-1045 (1999).
    12 A. Maeda, M. Kume, T. Ogura, K. Kuroki, T. Yamada, M. Nishikawa, and Y. Harada, Journal of Applied Physics 76, 6667-6670 (1994).
    13 M. Farhoud, H. I. Smith, M. Hwang, and C. A. Ross, Journal of Applied Physics 87, 5120-5122 (2000).
    14 C. Haginoya, S. Heike, M. Ishibashi, K. Nakamura, K. Koike, T. Yoshimura, J. Yamamoto, and Y. Hirayama, Journal of Applied Physics 85, 8327-8331 (1999).
    15 K. B. Jung, H. Cho, K. P. Lee, J. Marburger, F. Sharifi, R. K. Singh, D. Kumar, K. H. Dahmen, and S. J. Pearton, Journal of Vacuum Science & Technology B 17, 3186-3189 (1999).
    16 P. R. Krauss, P. B. Fischer, and S. Y. Chou, Journal of Vacuum Science & Technology B 12, 3639-3642 (1994).
    17 J. Wong, A. Scherer, M. Todorovic, and S. Schultz, Journal of Applied Physics 85, 5489-5491 (1999).
    18 J. P. Silverman, Journal of Vacuum Science & Technology B 15, 2117-2124 (1997).
    19 Y. Chen, R. K. Kupka, F. Rousseaux, F. Carcenac, D. Decanini, M. F. Ravet, and H. Launois, Journal of Vacuum Science & Technology B 12, 3959-3964 (1994).
    20 F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, Journal of Vacuum Science & Technology B 13, 2787-2791 (1995).
    21 K. Bessho, Y. Iwasaki, and S. Hashimoto, Ieee Transactions on Magnetics 32, 4443-4447 (1996).
    22 S. Wirth and S. von Molnar, Applied Physics Letters 76, 3283-3285 (2000).
    23 D. Hofmann, W. Schindler, and J. Kirschner, Applied Physics Letters 73, 3279-3281 (1998).
    24 P. R. Krauss and S. Y. Chou, Journal of Vacuum Science & Technology B 13, 2850-2852 (1995).
    25 G. Carter, Journal of Physics D-Applied Physics 34, R1-R22 (2001).
    26 T. Devolder, C. Chappert, Y. Chen, E. Cambril, H. Bernas, J. P. Jamet, and J. Ferre, Applied Physics Letters 74, 3383-3385 (1999).
    27 M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, Science 276, 1401-1404 (1997).
    28 J. R. Jeong, S. Kim, S. H. Kim, J. A. C. Bland, S. C. Shin, and S. M. Yang, Small 3, 1529-1533 (2007).
    29 M. S. H. F. Keller, and D. L. Robinson, J. Electrochem. Soc. 100, 411 (1953).
    30 T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, Science 261, 1316-1319 (1993).
    31 K. Nielsch, F. Muller, A. P. Li, and U. Gosele, Advanced Materials 12, 582-586 (2000).
    32 R. J. Tonucci, B. L. Justus, A. J. Campillo, and C. E. Ford, Science 258, 783-785 (1992).
    33 F. Matsumoto, K. Nishio, and H. Masuda, Advanced Materials 16, 2105-+ (2004).
    34 G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Nature 393, 346-349 (1998).
    35 Y. Lei, W. P. Cai, and G. Wilde, Progress in Materials Science 52, 465-539 (2007).
    36 O. Jessensky, F. Muller, and U. Gosele, Applied Physics Letters 72, 1173-1175 (1998).
    37 F. Y. Li, L. Zhang, and R. M. Metzger, Chemistry of Materials 10, 2470-2480 (1998).
    38 S. Bandyopadhyay, A. E. Miller, H. C. Chang, G. Banerjee, V. Yuzhakov, D. F. Yue, R. E. Ricker, S. Jones, J. A. Eastman, E. Baugher, and M. Chandrasekhar, Nanotechnology 7, 360-371 (1996).
    39 H. Masuda and K. Fukuda, Science 268, 1466-1468 (1995).
    40 H. Chik and J. M. Xu, Materials Science & Engineering R-Reports 43, 103-138 (2004).
    41 H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Applied Physics Letters 71, 2770-2772 (1997).
    42 H. Masuda, Y. Matsui, M. Yotsuya, F. Matsumoto, and K. Nishio, Chemistry Letters 33, 584-585 (2004).
    43 Y. Matsui, K. Nishio, and H. Masuda, Small 2, 522-525 (2006).
    44 D. Crouse, Y. H. Lo, A. E. Miller, and M. Crouse, Applied Physics Letters 76, 49-51 (2000).
    45 A. L. Cai, H. Y. Zhang, H. Hua, and Z. B. Zhang, Nanotechnology 13, 627-630 (2002).
    46 A. Mozalev, A. Surganov, and S. Magaino, Electrochimica Acta 44, 3891-3898 (1999).
    47 A. I. Vorobyova, V. A. Sokol, and E. A. Outkina, Applied Physics a-Materials Science & Processing 67, 487-492 (1998).
    48 P. L. Chen, C. T. Kuo, T. G. Tsai, B. W. Wu, C. C. Hsu, and F. M. Pan, Applied Physics Letters 82, 2796-2798 (2003).
    49 J. Lee, J. Kim, and T. Hyeon, Advanced Materials 18, 2073-2094 (2006).
    50 Z. Miao, D. S. Xu, J. H. Ouyang, G. L. Guo, X. S. Zhao, and Y. Q. Tang, Nano Letters 2, 717-720 (2002).
    51 J. Y. Liang, H. Chik, A. J. Yin, and J. Xu, Journal of Applied Physics 91, 2544-2546 (2002).
    52 S. Wang, G. J. Yu, J. L. Gong, Q. T. Li, H. J. Xu, D. Z. Zhu, and Z. Y. Zhu, Nanotechnology 17, 1594-1598 (2006).
    53 M. T. Rahman, N. N. Shams, and C. H. Lai, Nanotechnology 19, 6 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE