簡易檢索 / 詳目顯示

研究生: 吳智正
Wu, Zhi-Zheng
論文名稱: 應用於主軸之高速銅轉子感應電動機研究
Study of High Speed Copper-rotor Induction Machines in Machine Tools Spindle Applications
指導教授: 王培仁
Wang, Pei-Jen
口試委員: 蕭鈞毓
Hsiao, Chun-Yu
宋震國
Sung, Cheng-Kuo
茆尚勳
Mao, Shang-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 153
中文關鍵詞: 高速電機優化設計感應電動機優化設計電磁場與結構耦合分析
外文關鍵詞: High-speed Motor Optimization, Induction Motor, Electromagnetic Field and Structure Coupling Analysis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前各個主要工業國家都著力於研究高效能電機的研發,追求電機之運轉性能提升。其中,感應電動機雖已普遍應用於工業各項動力市場,具有結構強與容易驅控等優點。近年來因工具機主軸高速化需求,電機設計在運轉速度與效能難以兼顧的條件下,使得高速感應電動機之研發日趨熱絡。有鑒於此,本論文將選擇高速電動機用之高頻矽鋼片以各式繞組參數、定轉子槽配合以及定轉子槽型幾何參數搭配優化進行初步設計,以提升高速化電動機之各式性能。
    本文針對工具機主軸之高速感應電動機為研究目標,探討基礎感應電動機設計法則,考慮工具機之負載需求,規劃電動機設計流程與計算設計參數,分析並建構電機系統模擬之規劃,以調整繞組以及槽型結構為基礎背景,進行氣隙諧波磁場分佈與定子齒部徑向電磁力波探討,經優化後得出最適電機幾何尺寸、槽極數、定轉子槽數比、槽型及繞組,期望降低高速轉動時產生的電機振動及噪聲並優化主軸電機性能。研究過程採用美商ANSYS公司之RMxprt®、Maxwell 2D/3D®及Mechanical Workbench分析商用套裝軟體,以數值計算其物理量與電磁場分佈,針對電機之動態分析指標參數進行討論並進行電磁與結構耦合分析,最後以實驗室之銅轉子感應主軸馬達進行設計參數驗證,確定電機設計之正確性與實現性。


    This thesis aims at high-speed induction motors applied to the machine tool spindles covering topics of basic motor design rules, motor design steps, selection of design parameters, and Computer-Aided Engineering simulation processes. Based on adjusting the winding and slot structure, magnetic field distribution in air gap and relavent radial electromagnetic forces on stator tooths are carefully reviewed. Throughout optimization, the optimal geometry, the slot numbers, diametric ratio of stator and rotor, and turns of winding are calculated; and, the ultimate goal is to reduce vibration and acoustic noises plus performance for spindle motors running at high speed. The study has been adopting a commercial software package copyrighted by ANSYS Inc., bundled with Electronics EM and Mechanical Workbench, for numerical simulation of physical quantities and electromagnetic field details. By preliminary correlation of results in magnetostatic and transient field analysis, electromagnetic and structural coupling analysis is cosimulated to give cross-coupling acoustic and vibrational results. Finally, verifications of the design parameters have been conducted for laboratory-scale copper rotor induction spindle motors to justify the accuracy and practicality of the motor design process.

    摘要 i ABSTRACT ii 目錄 iv 圖目錄 vii 表目錄 xv 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 1 1-2-1 高速感應電機之設計項目 3 1-2-2 感應電動機電磁噪聲之成因 6 1-3 研究動機與方法 8 1-4 結語 9 第二章 電機設計基礎理論與公式 15 2-1 前言 15 2-2 高速感應電動機的運作原理與參數設計 15 2-2-1 感應電動機的旋轉原理 15 2-2-2 旋轉磁場 17 2-2-3感應電動機之定子繞組參數設計 17 2-2-4 鼠籠式感應電動機之電磁激振力計算與分析 21 2-3 高速電動機的熱約束標準 24 2-4 高速電動機的機械結構特性 25 2-4-1 鼠籠式轉子選用 25 2-4-2 轉子動力學與機械負荷能力 25 2-4-3 臨界轉速與共振頻率 27 2-5 應用於電動機之控制理論 30 2-6 應用於電動機設計之有限元素分析理論 31 2-7 結語 34 第三章 電動機架構初步設計 40 3-1 前言 40 3-2 高速感應電機操作環境設定 43 3-2-1 高速感應電動機規格及操作環境 43 3-2-2 高速感應電動機之負載量計算 45 3-3 高速感應電機之初步參數設計 46 3-3-1 感應電動機的等效電路特性分析 46 3-3-2 電機設計條件估算-伊森法則 51 3-3-3 感應電動機之電能參數設計 54 3-3-4 感應電動機之磁能參數設計 57 3-3-5 定子與轉子鼠籠槽數及電機極數選擇 59 3-4 電機定子結構與定子繞組設計 61 3-5 電機轉子結構設計 66 3-6 結語 69 第四章 實驗與模擬結果分析 88 4-1 實驗感應電動機設計規格與振動分析方法 88 4-2 實驗感應電動機之有限元素分析 89 4-2-1 轉子槽數估算 92 4-2-2 電流波形量測與分析 93 4-3 實驗高速感應電動機特性量測 94 4-4 數值分析優化方法 95 4-4-1 徑向氣隙磁密時間諧波抑制方法 96 4-4-2 直接齒部電磁力耦合結構分析 97 4-4-3 高速感應電動機之優化設計 98 4-5 結語 105 第五章 結論與未來研究方向 146 5-1 總結 146 5-2 未來研究方向 147 參考文獻 148

    [1] 蔡志成、柳義耿、張錫晴、蔡垂錫,2003年七月,“鋁合金高速銑削之性能驗證”,興大工程學報,第十四卷第二期,pp.87-95.
    [2] D. Gerada, A. Mebarki, N. L. Brown, C. Gerada, A. Cavagnino and A. Boglietti, “High-speed Electrical Machines: Technologies, Trends, and Developments,” IEEE Trans. Ind. Electr., Vol. 61, No. 6, pp. 2946-2959 (2014).
    [3] "三菱綜合材料-硬质合金刀具事业部-技术情报/计算公式", retrieved from August 5, 2018, 三菱综合材料硬质合金刀具事业部, http://www.mmus-carbide.com/technical_information
    [4] Lahne, Hans-Christian, and Dieter Gerling. "Investigation of High-Performance Materials in Design of a 50000 rpm High-Speed Induction Generator for use in Aircraft Applications." Workshop on Aircraft System Technologies (AST-2015). Vol. 24. No. 25.02. 2015.
    [5] S. Li, Y. Li, W. Choi and B. Sarlioglu, “High Speed Electric Machines – Challenges and Design Considerations,” IEEE Trans. Transp. Electrif., Vol. 2, No. 1, pp. 2-13 (2016).
    [6] CHOI, Wooyoung; LI, Silong; SARLIOGLU, Bulent, “Core loss estimation of high speed electric machines: An assessment”, In: Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE. IEEE, 2013. pp. 2691-2696.
    [7] Lahne, Hans-Christian, and Dieter Gerling. "Comparison of state-of-the-art high-speed high-power machines: Research study including a design example of a 50000 rpm induction machine." Industrial Electronics Society, IECON 2015-41st Annual Conference of the IEEE. IEEE, 2015. pp. 3519-3524.
    [8] Saari J. Thermal analysis of high speed induction machines. Acta Polytechnica Scandinavica. Electrical Engineering Series No. 90. Helsinki 1998.
    [9] Lipo, T. A.: Introduction to AC Machine Design, Third Edition, Wisconsin Power Electronics Research Center, University of Wisconsin, Madison, USA, 27.12.2011.
    [10] Finley, William R., Mark M. Hodowanec, and Warren G. Holter. "An analytical approach to solving motor vibration problems." Petroleum and Chemical Industry Conference, 1999. Industry Applications Society 46th Annual. IEEE, 1999. pp. 217-232.
    [11] Jimoh, A. A., and M. Muteba. "Performance analysis of a three-phase induction motor with double-triple winding layout." 2013 1st International Future Energy Electronics Conference (IFEEC). 2013. pp. 1900-1907.
    [12] Abdel-Khalik, Ayman S., and Shehab Ahmed. "Performance evaluation of a five-phase modular winding induction machine." IEEE Transactions on Industrial Electronics 59.6 (2012): pp.2654-2669.
    [13] Muteba, Mbika, Adisa A. Jimoh, and Dan V. Nicolae. "Performance analysis of induction machines with unconventional winding configurations." Applied Mechanics and Materials. Vol. 260. Trans Tech Publications, 2013, Vol. 260, pp. 337-341.
    [14] Gundogdu, Tayfun, Guven Komurgoz, and Burcu Mantar. "Implementation of fractional slot concentrated windings to Induction Machines." IET Conference Proceedings. The Institution of Engineering & Technology, 2014: pp. 0047-0047.
    [15] Pyrhonen, Juha, Tapani Jokinen, and Valeria Hrabovcova. Design of Rotating Electrical Machines. John Wiley & Sons, 2013.
    [16] El-Refaie, Ayman M. "Fractional-slot concentrated-windings synchronous permanent magnet machines: Opportunities and challenges." IEEE Transactions on industrial Electronics 57.1 (2010): pp.107-121.
    [17] El-Refaie, Ayman M., and Manoj R. Shah. "Comparison of induction machine performance with distributed and fractional-slot concentrated windings." Industry Applications Society Annual Meeting, 2008. IAS'08. IEEE. IEEE, 2008. pp. 1-8.
    [18] Mike McClelland(2017), "MOTOR WINDINGS: WHAT ARE THE DIFFERENCES?", Nidec Control Techniques Limited, retrieved from December 5, 2017, https://www.theautomationengineer.com/technical/motor-windings-differences
    [19] Suad Ibrahim Shahl. (2009) “Introduction to AC Machines: Electrical Machines II”. retrieved from December 5, 2017, http://www.uotechnology.edu.iq/dep-eee/lectures/3rd/Electrical/Machines%202/I_Introduction.pdf
    [20] Yilmaz, Murat. "Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications." Renewable and Sustainable Energy Reviews 52 (2015): pp.80-99.
    [21] “AC Windings”, retrieved from December 5, 2017, http://www.eeeguide.com/ac-windings
    [22] Rezig, A., M. R. Mekideche, and N. Ikhlef. "Effect of rotor eccentricity on magnetic noise generation in induction motors." Journal of Electrical Engineering 3.4 (2014): 200-208.
    [23] 胡新晚. "降低三相异步电动机电磁噪声." 大电机技术 5 (2003): pp.31-32.
    [24] 代颖, et al. "抑制车用异步电机电磁噪声的槽配合." 中国电机工程学报 27 (2010): pp.32-35.
    [25] Chitroju, Rathna, and Chandur Sadarangani. "Phase shift method for radial magnetic force analysis in induction motors with non-skewed asymmetrical rotor slots." Electric Machines and Drives Conference, 2009. IEMDC'09. IEEE International. IEEE, 2009. pp. 207-212.
    [26] "從楞次定律(Lenz's Law)到反電動勢"-路昌工業股份有限公司, retrieve form December 5, 2017, http://lutron1980.pixnet.net/blog/post/171777618
    [27] 汤蕴璆, and 史乃. "电机学 (Electric machinery)." (1999).
    [28] 黄坚, and 郭中醒. "实用电机设计计算手册." (2010): 78-97.
    [29] Madescu, Gheorghe, et al. "Effects of stator slot magnetic wedges on the induction motor performances." Optimization of Electrical and Electronic Equipment (OPTIM), 2012 13th International Conference on. IEEE, 2012, pp. 489-492.
    [30] 李哲生, “改善凸极同步发电机空载电压波形的措施,” 《哈尔滨电工学院学报》 1983年03期 期刊.
    [31] 王荀, and邱阿瑞, 笼型异步电动机径向电磁力波的有限元计算. Diss. 2012.
    [32] Gyftakis, Konstantinos N., and Joya Kappatou. "The impact of the rotor slot number on the behaviour of the induction motor." Advances in Power Electronics 2013 (2013).
    [33] 孙巍, and 李敏. "感应电动机电磁力的计算与对电机振动的影响." 电机与控制应用 2015 年 11 (2015): pp.41-46.
    [34] Curiac, Radu S., and Sumit Singhal. "Causes and reduction techniques of electromagnetic noise in induction motors." Pulp and Paper Industry Technical Conference, 2009. PPIC'09. Conference Record of 2009 Annual. IEEE, 2009. pp. 39-44.
    [35] Rezzoug, Abderrezak, and Mohammed El-Hadi Zaim, Eds. Non-conventional electrical machines. John Wiley & Sons, 2013.
    [36] Bonnett, Austin H., and Timothy Albers. "Squirrel cage rotor options for AC induction motors." Pulp and Paper Industry Technical Conference, 2000. Conference Record of 2000 Annual. IEEE, 2000. APA. pp. 54-67.
    [37] Hu, Chung-Hao. "三相感應馬達能源效率提昇設計與分析." 清華大學動力機械工程學系學位論文(2012): pp. 1-91.
    [38] Cochran, Paul. Polyphase Induction Motors, Analysis: Design, and Application. CRC Press, 1989. APA.
    [39] F. Zhang, G. Du, T. Wang, F. Wang, W. Cao, and J. L. Kirtley, “Electromagnetic Design and Loss Calculations of a 1.12-MW High-Speed Permanent-Magnet Motor for Compressor Applications,” IEEE Transactions on Energy Conversion, Vol. 31, No. 1, pp. 132-140, (2016).
    [40] “產品手冊/電磁鋼捲-中國鋼鐵”, retrieve form December 5, 2017, http://www.csc.com.tw/csc/pd/doc/spec_es_c_2016.pdf.
    [41] Boglietti, Aldo, et al. "Key design aspects of electrical machines for high-speed spindle applications." IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society. IEEE, 2010, pp. 1735-1740.
    [42] Dlala, Emad, et al. "Efficiency map simulations for an interior PM motor with experimental comparison and investigation of magnet size reduction." Electric Machines & Drives Conference (IEMDC), 2013 IEEE International. IEEE, 2013. pp. 23-29.
    [43] Boldea, Ion. Variable Speed Generators. CRC press, 2015.
    [44] 万山明, and 陈骁. "感应电动机转子磁场定向下的弱磁控制算法." 中国电机工程学报 31.30 (2011): pp.93-99.
    [45] Rosu, Marius, et al. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives. Vol. 66. John Wiley & Sons, 2017.
    [46] 葉仲基. "機電整合-農業自動化叢書之十二-第五章." 國立台灣大學生物產業機電工程學系, 台北市 (2003).
    [47] Harley, Ronald G., and Yao Duan. "Traditional Design of Cage Rotor Induction Motors." Georgia Institute of Technology (2009).
    [48] 王浩编著,数控机床电气控制. 清华大学出版社有限公司, 2006, pp.155-162.
    [49] 张志润, and 张伯霖. "超高速数控机床主轴单元的设计研究." 广东工业大学学报 15.s1 (1998): pp.4-8.
    [50] "派克支持-文宣與參考資料-旋轉式主軸馬達", retrieved from August 5, 2018, 台灣派克漢尼汾股份有限公司, http://www.parker.com/Literature/Electromechanical%20North%20America/SERVICE-USER%20GUIDES/PVD%203627%20MGV%20Manual.pdf
    [51] Velazquez, R., and A. C. Smith. "Electromagnetic modelling of high speed induction motors." 8th IET International Conference on Power Electronics, Machines and Drives , (PEMD 2016): pp. 6-6.
    [52] YAŞA, Yusuf, Yílmaz SÖZER, and Muhammet GARİP. "High-power density switched reluctance machine development for high-speed spindle applications." Turkish Journal of Electrical Engineering & Computer Sciences 26.3 (2018).
    [53] 張錫晴、蔡垂錫,2001,「主軸特性對高速切削加工之影響」,中國機械工程學會會刊,第236期,第33-39頁.
    [54] 李冰, 邓智泉, and 严仰光. "高速异步电机设计的关键技术." 微特电机 30.6 (2002): pp.7-10.
    [55] Boglietti, A., et al. "About the design of very high frequency induction motors for spindle applications." Industry Applications Society Annual Meeting, 1992., Conference Record of the 1992 IEEE. IEEE, 1992.
    [56] Boglietti, Aldo, et al. "Analysis and modeling of rotor slot enclosure effects in high-speed induction motors." IEEE Transactions on Industry Applications 48.4 (2012): pp.1279-1287.
    [57] 江虹. 高速感应电动机电磁设计方法的研究 [D]. Diss. 哈尔滨工业大学, 2006.
    [58] 王凤翔. "高速电机的设计特点及相关技术研究." 沈阳工业大学学报 28.3 (2006): pp.258-264.
    [59] S. Xue, H. Xu, C. Fang, “The Effect of Stator Slot and Air Gap Length on High Speed Brushless PM Motor,” 2012 IEEE 7th International Power Electronics and Motion Control Conference-ECCE Asia , Harbin, China, June 2-5, (2012), Vol. 1, pp. 281-285.
    [60] KONDO, Minoru, Minoru MIYABE, and Shinichi MANABE. "Development of a high efficiency induction motor and the estimation of energy conservation effect." Quarterly Report of RTRI 55.3 (2014): pp.138-143.
    [61] Zhou, Hao, and Fengxiang Wang. "Comparative study on high speed induction machine with different rotor structures." Electrical Machines and Systems, 2007. ICEMS. International Conference on. IEEE, 2007, pp. 1009-1012.
    [62] Zhang, Fengge, Yuchao Li, and Guanghui Du. "Comparative study on structure of laminated-rotor high-speed induction machine." Electrical Machines and Systems (ICEMS), 2014 17th International Conference on. IEEE, 2014: pp. 3175-3179.
    [63] Liao, Yuefeng, and Thomas A. Lipo. "Effect of saturation third harmonic on the performance of squirrel-cage induction machines." Electric machines and power systems 22.2 (1994): pp.155-171.
    "MITSUBISHI CNC DRIVE SYSTEM DATA BOOK", retrieved from August 29, 2018, MITSUBISH ELECTRIC, http://dl.mitsubishielectric.com/dl/fa/document/ manual/ cnc/ib1501142/ib1501142engc.pdf

    QR CODE