簡易檢索 / 詳目顯示

研究生: 陳逸熙
Yi-Shi Chen
論文名稱: 應用於多媒體串流之MPEG 4 可精緻伸縮之編碼器設計
Design for MPEG4 Fine Granularity Scalability Encoder for Multimedia Streaming
指導教授: 陳永昌
Yung-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 英文
論文頁數: 43
中文關鍵詞: MPEG4FGS可伸縮可精緻伸縮
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著網路技術快速的發展、網路頻寬的增加,在網際網路上傳輸多媒體的應用越來越廣泛且受到重視。傳統視訊壓縮方法的目標是要在一固定的位元率對畫面視覺效果作最佳化。然而,在網際網路上每個使用者的頻寬都不一樣而且有效頻寬會隨著時間變化,因此傳統視訊壓縮方法並不適用於網際網路上的傳輸。為了能夠應付頻寬的變化,視訊位元流 (video bitstream) 即使因為網路頻寬的限制而被截斷也必須能夠由收到的部分位元流解碼回視訊畫面且接到的位元數越多,相對的畫質也就越好。這個特性也就是所謂的精緻可伸縮性 (fine granularity scalability)。
    目前MPEG委員會採用將量化後的差值作數位餘弦轉換再對位元平面作編碼 (bitplane coding)。在本篇論文中,我們提出以嵌入式量化器 (embedded quantizer) 為基底的編碼方法來達成精緻可伸縮性。嵌入式量化器的主要概念是將餘弦轉換過的係數經過一次量化後,將此量化過的數值分割為好幾個部分,再對每個部分個別作編碼。如果每個部分都能夠被接收到而且正確解碼的話,那整體的表現就會跟沒有經過分割是一樣的。

    本篇論文中對此以嵌入式量化器為基底的編碼方法作探討及模擬。此方法可以確實達成精緻可伸縮性,雖然編碼效能僅僅趨近於目前MPEG委員會所採用的方法。我們相信如果進一步對此編碼方法作位元流結構 (bitstream syntax) 作最佳化的話,其編碼效能必能有所增進。


    In recent years, the need of transmitting multimedia contents over TCP/IP on the Internet is growing rapidly. The conventional video compression techniques are concentrated on optimizing the coding performance at a given bitrate. However, these video coding techniques are not suitable for multimedia streaming over the Internet due to the bandwidth differences of heterogeneous networks and the bandwidth variations with time. In order to transmit multimedia contents over the Internet, the bitstream should be partially decodable at any bitrate to reconstruct a video signal with the optimized quality at that bitrate. This is the objective of fine granularity scalability (FGS) video coding techniques in the Amendment of MPEG-4.
    The bitplane coding of the DCT residues was adopted by the MPEG committees. In this thesis, we propose an embedded-quantizer based encoder to achieve fine granularity scalability. The concept of embedded-quantizer is to quantize the DCT coefficients once, and then separate the quantized coefficients into several parts and code each separated part individually. If all separated parts can be received and decoded, the performance will be the same as if there were no separation.

    The performance of the embedded-quantizer based encoder is evaluated. We proved that this structure could achieve fine granularity scalability although the performance is merely approaching the structure provided by FGS reference software. We believe that its performance could be better if the bitstream syntax was optimized.

    Abstract Chapter 1: Introduction Chapter 2: Overview of Fine Granularity Scalability Chapter 3: Embedded-Quantizer Based FGS Chapter 4: Simulation Results Chapter 5: Conclusions and Future Works References

    [1] Weiping Li, “Overview of fine granularity scalability in MPEG-4 Video standard,” IEEE Trans. Circuits and Systems for Video Technology, vol. 11, no. 3, March 2001.
    [2] ISO/IEC IS 13818-2, “Information technology – Generic coding of moving pictures and associated audio information – Part 2 : Video,” November 1994.
    [3] ISO/IEC14496-2:1999/FDAM4 “Information technology-Coding of audio-visual objects - Part 2: Visual, AMENDMENT 4: Streaming video profile,” ,ISO/IEC JTC1/SC29/WG11, MPEG01/N3904, Jan. 2001.
    [4] Yuh-Feng Hsu, Chien-Hua Hsieh, and Yung-Chang Chen, “Embedded SNR scalable MPEG-2 video encoder and its associated error resilience decoding peocedures,” Signal Processing: Image Communication, vol.14, pp. 397-412, 1999.
    [5] Chien-Hua Hsieh, “Codec design and error handling for MPEG-2 SNR scalable coding,” Master Degree thesis, 1996, NTHU.
    [6] Yuh-Feng Hsu, “Scalable video codec design for direct broadcasting using Ka-band,” PhD thesis, 1998, NTHU.
    [7] Weiping Li, “Bitplane coding of DCT coefficients for fine granularity scalability,” ,ISO/IEC JTC1/SC29/WG11, MPEG98/M3989, Oct. 1998.
    [8] F. Ling, W. Li, and H.-Q Sun, “Bitplance coding of DCT coefficients for image and video compression,” in Proc. SPIE-VCIP’99, pp. 500-508, Jan. 1999.
    [9] B. Schuster, “Fine granularity scalability with wavelet coding,”, ISO/IEC JTC1/SC29/WG11, MPEG98/M4021, Oct. 1998.
    [10] Y.-W. Chen, H. Radha, and R.A. Cohen, “Results of experiment of fine granularity scalability with wavelet encoding residuals,”, ISO/IEC JTC1/SC29/WG11, MPEG98/M3988, Oct. 1998.
    [11] J. Liang, J. Yu, Y. Wang, M. Srinath, and M.-H. Zhou, “Fine granularity scalable video coding using combination of MPEG4 video objects and still texture objects,”, ISO/IEC JTC1/SC29/WG11, MPEG98/M4025,
    [12] S. C. S. Cheung and A. Zakhor, “Matching pursuit coding for fine granular video scalability,”, ISO/IEC JTC1/SC29/WG11, MPEG98/M3991, Oct. 1998.
    [13] M. Benetiere and C. Dufour, “Matching pursuits residual coding for video fine granular scalability,”, ISO/IEC JTC1/SC29/WG11, MPEG98/M4008, Oct. 1998.
    [14] Hayder M.Radha, Mihaela van der Schaar, and Yingwei Chen, “The MPEG-4 fine grained scalable video coding method for multimedia streaming over IP,” IEEE Trans. Multimedia, vol. 3, no. 1, March 2001.
    [15] Hong Jiang and Gregory M. Thayer, “Using frequency weighting in fine granularity scalability bit-plane coding for natural video,” , ISO/IEC JTC1/SC29/WG11, MPEG99/M5489, December 1999.
    [16] Weiping Li, “Frequency Weighting for FGS,” , ISO/IEC JTC1/SC29/WG11, MPEG99/M5589, December 1999.
    [17] Mihaela van der Schaar, Yingwei Chen, and Hayder M.Radha, “Adaptive quantization modes for fine-granularity scalabilty,” ,ISO/IEC JTC1/SC29/WG11, MPEG99/M4938, July 1999.
    [18] Hong Jiang, “Experiments on using post-clip addition in MPEG-4 FGS video coding,” ,ISO/IEC JTC1/SC29/WG11, MPEG00/M5669, March 2000.
    [19] Weiping Li, “Verification of post-clipping addition results,” , ISO/IEC JTC1/SC29/WG11, MPEG00/M5967, March 2000.
    [20] Shipeng Li, Feng Wu, Ya-Qin Zhang, “Study of a new approach to improve FGS video coding efficiency,”, ISO/IEC JTC1/SC29/WG11, MPEG99/M5583, December 1999.
    [21] Feng Wu, Shipeng Li, Ya-Qin Zhang, “A framework for efficient progressive fine granularity scalable video coding,” IEEE Trans. Circuits and Systems for Video Technology, vol. 11, no. 3, March 2001.
    [22] Mihaela van der Schaar and Hayder Radha, “Motion-Compensation based Fine-Granular Scalability (MC-FGS),” , ISO/IEC JTC1/SC29/WG11, MPEG00 /M6475, October 2000.
    [23] Rama Kalluri and Mihaela van der Schaar, “Single-Loop Motion-Compensated based Fine-Granular Scalability (MC-FGS), with cross-checked results,” , ISO/IEC JTC1/SC29/WG11, MPEG01/M6831, Jan. 2001.
    [24] K.H. Tzou, “Embedded max quantization,” in Proc. IEEE ICASSP, pp. 505-508, 1986.
    [25] ISO/IEC JTC1/SC29/WG11, “Coded representation of picture and audio information – Test Model 5”, N0400, April 1993.
    [26] ISO/IEC JTC1/SC29/WG11, “MPEG-4 Video Verification Model version 18.0,” ISO/IEC JTC1/SC29/WG11, MPEG01/N3908, Jan. 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE