研究生: |
吳廷翰 Wu, Ting-Han |
---|---|
論文名稱: |
人類 MAPT表現在果蠅生物模式造成多巴胺神經細胞凋亡 Expression of human MAPT produces dopaminergic neuronal degeneration in the PD animal model of Drosophila |
指導教授: |
張慧雲
Chang, Hui-Yun |
口試委員: |
桑自剛
陳盛良 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 系統神經科學研究所 Institute of Systems Neuroscience |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 帕金森氏症 、多巴胺 、果蠅 、神經退化性疾病 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Abstract
Parkinson’s disease (PD) is one of the most common age-dependent neurodegenerative diseases. It is characterized by the movement dysfunctions. These abnormalities may result from the progressive loss of dopamine neurons in the brain. The molecular pathogenesis of tau associated Parkinson’s disease is still unclear. In this study, we focused on two PD genes, LRRK2 and MAPT. We used GAL4/UAS system to express these two human PD genes in the brains of Drosophila melanogaster.Drosophila since this animal model has the advantage of genetic manipulation and the short lifespan. And there are similarities in the nerve system between human and fly. We expressed these PD genes in different neurotransmitter systems in fly brain. And we analyzed their influences in the varied types of neurons. We found that monogenic expression of MAPT produced progressive dopaminergic neuronal degeneration and tau containing tangles which recaptured the key pathogenesis seen in the brains of PD patients. Therefore, it is possible that we could investigate the molecular mechanism of how tau caused PD in fly brain. We also found that similar groups in different neuronal system were affected by tau protein expression. It implicated that the neurons suffer degeneration might related to their function. And we introduced the MARCM method into our experiment thus we might study these PD genes on single-neuron level in future.
摘要
帕金森氏症 (Parkinson’s disease) 是一種常見的神經退化性疾病,多數發生在較老的年齡層中,其外在病徵主要為在運動能力障礙。這些病徵可能是由腦內黑質區域的多巴胺神經細胞凋亡所導致。帕金森氏症確切的致病機制尚未完全明瞭,外在因素如腦部創傷及某些毒素或是經由家族的遺傳皆有可能會引起帕金森氏症的產生。目前已經有許多和帕金森氏症相關的基因被發現,這些基因以及其突變可能會影響得到帕金森氏症的機率。我們的研究主要著重在兩個與帕金森氏症相關的基因上,其為LRRK2和MAPT(tau)。我們利用了GAL4/UAS方法來將人類LRRK2和tau蛋白質表現在果蠅的腦中。果蠅具有方便於基因操控及較短的生命週期等優點,且果蠅的腦部和人類有許多相似之處,例如兩者會利用共同的神經傳遞物質。依照所用的神經傳遞物質,果蠅腦部神經被區分為不同群組。我們使LRRK2和MAPT基因表現這些不同的群組之中,並觀察這些帕金森氏症相關的基因會對神經細胞造成何種影響。在我們的結果中可看到,MAPT基因的表現會重現類似帕金森氏症的病癥,造成果蠅腦內多巴胺神經細胞的凋亡。因此,我們將可以在果蠅腦內研究更多帕金森氏症基因的功能及交互作用。此外,我們也採用了MARCM這個方法,以期未來能夠在單一神經細胞的規模中,觀察帕金森氏症相關基因在果蠅腦內造成的影響。
References
Bao, X., B. Wang, et al. (2010). "Localization of serotonin/tryptophan-hydroxylase-immunoreactive cells in the brain and suboesophageal ganglion of Drosophila melanogaster." Cell Tissue Res 340(1): 51-59.
Berwick, D. C. and K. Harvey (2011). "LRRK2 signaling pathways: the key to unlocking neurodegeneration?" Trends Cell Biol 21(5): 257-265.
Bove, J., D. Prou, et al. (2005). "Toxin-induced models of Parkinson's disease." NeuroRx 2(3): 484-494.
Coleman, C. M. and W. S. Neckameyer (2005). "Serotonin synthesis by two distinct enzymes in Drosophila melanogaster." Arch Insect Biochem Physiol 59(1): 12-31.
Cookson, M. R. (2010). "The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease." Nat Rev Neurosci 11(12): 791-797.
Coulom, H. and S. Birman (2004). "Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster." J Neurosci 24(48): 10993-10998.
Dawson, T. M., H. S. Ko, et al. (2010). "Genetic animal models of Parkinson's disease." Neuron 66(5): 646-661.
Denk, F. and R. Wade-Martins (2009). "Knock-out and transgenic mouse models of tauopathies." Neurobiol Aging 30(1): 1-13.
Friggi-Grelin, F., H. Coulom, et al. (2003). "Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase." J Neurobiol 54(4): 618-627.
Gao, H. M. and J. S. Hong (2011). "Gene-environment interactions: key to unraveling the mystery of Parkinson's disease." Prog Neurobiol 94(1): 1-19.
Kong, E. C., K. Woo, et al. (2010). "A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila." PLoS One 5(4): e9954.
Lawal, H. O., H. Y. Chang, et al. (2010). "The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons." Neurobiol Dis 40(1): 102-112.
Lee, T., A. Lee, et al. (1999). "Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast." Development 126(18): 4065-4076.
Lee, T. and L. Luo (1999). "Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis." Neuron 22(3): 451-461.
Lee, T. and L. Luo (2001). "Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development." Trends Neurosci 24(5): 251-254.
Leong, S. L., R. Cappai, et al. (2009). "Modulation of alpha-synuclein aggregation by dopamine: a review." Neurochem Res 34(10): 1838-1846.
Li, Y., W. Liu, et al. (2009). "Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease." Nat Neurosci 12(7): 826-828.
Lin, C. H., P. I. Tsai, et al. (2010). "LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ss." J Neurosci 30(39): 13138-13149.
Liu, Z., X. Wang, et al. (2008). "A Drosophila model for LRRK2-linked parkinsonism." Proc Natl Acad Sci U S A 105(7): 2693-2698.
MacLeod, D., J. Dowman, et al. (2006). "The familial Parkinsonism gene LRRK2 regulates neurite process morphology." Neuron 52(4): 587-593.
Mao, Z. and R. L. Davis (2009). "Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity." Front Neural Circuits 3: 5.
Matenia, D. and E. M. Mandelkow (2009). "The tau of MARK: a polarized view of the cytoskeleton." Trends Biochem Sci 34(7): 332-342.
Melrose, H. L., J. C. Dachsel, et al. (2010). "Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice." Neurobiol Dis 40(3): 503-517.
Monastirioti, M. (1999). "Biogenic amine systems in the fruit fly Drosophila melanogaster." Microsc Res Tech 45(2): 106-121.
Ott, S. R. (2008). "Confocal microscopy in large insect brains: zinc-formaldehyde fixation improves synapsin immunostaining and preservation of morphology in whole-mounts." J Neurosci Methods 172(2): 220-230.
Paisan-Ruiz, C., S. Jain, et al. (2004). "Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease." Neuron 44(4): 595-600.
Polydoro, M., C. M. Acker, et al. (2009). "Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology." J Neurosci 29(34): 10741-10749.
Ramsden, M., L. Kotilinek, et al. (2005). "Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L)." J Neurosci 25(46): 10637-10647.
Saha, S., M. D. Guillily, et al. (2009). "LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans." J Neurosci 29(29): 9210-9218.
Sai, Y., Q. Wu, et al. (2008). "Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism." Toxicol In Vitro 22(6): 1461-1468.
Sherer, T. B., R. Betarbet, et al. (2003). "Mechanism of toxicity in rotenone models of Parkinson's disease." J Neurosci 23(34): 10756-10764.
Simon, A. F., R. Daniels, et al. (2009). "Drosophila vesicular monoamine transporter mutants can adapt to reduced or eliminated vesicular stores of dopamine and serotonin." Genetics 181(2): 525-541.
Sitaraman, D., M. Zars, et al. (2008). "Serotonin is necessary for place memory in Drosophila." Proc Natl Acad Sci U S A 105(14): 5579-5584.
Spindler, S. R. and V. Hartenstein (2010). "The Drosophila neural lineages: a model system to study brain development and circuitry." Dev Genes Evol 220(1-2): 1-10.
Strauss, R. (2002). "The central complex and the genetic dissection of locomotor behaviour." Curr Opin Neurobiol 12(6): 633-638.
Suster, M. L., L. Seugnet, et al. (2004). "Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap." Genesis 39(4): 240-245.
Talmat-Amar, Y., Y. Arribat, et al. (2011). "Important neuronal toxicity of microtubule-bound Tau in vivo in Drosophila." Hum Mol Genet 20(19): 3738-3745.
Theodosiou, N. A. and T. Xu (1998). "Use of FLP/FRT system to study Drosophila development." Methods 14(4): 355-365.
Venda, L. L., S. J. Cragg, et al. (2010). "alpha-Synuclein and dopamine at the crossroads of Parkinson's disease." Trends Neurosci 33(12): 559-568.
Wang, D., B. Tang, et al. (2008). "Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons." Mol Neurodegener 3: 3.
Webber, P. J. and A. B. West (2009). "LRRK2 in Parkinson's disease: function in cells and neurodegeneration." FEBS J 276(22): 6436-6444.
White, K. E., D. M. Humphrey, et al. (2010). "The dopaminergic system in the aging brain of Drosophila." Front Neurosci 4: 205.
Whitworth, A. J., D. A. Theodore, et al. (2005). "Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease." Proc Natl Acad Sci U S A 102(22): 8024-8029.
Winner, B., H. L. Melrose, et al. (2011). "Adult neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice." Neurobiol Dis 41(3): 706-716.
Zimprich, A., S. Biskup, et al. (2004). "Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology." Neuron 44(4): 601-607.