研究生: |
林敬博 Lin, Ching-Po |
---|---|
論文名稱: |
電漿輔助化學氣相沉積製程研究非晶矽碳化物薄膜之放射光譜量測分析與薄膜特性之關聯性 Correlation between Analysis of Optical Emission Spectrum and Properties of a-Si1-xCx:H Thin Film Deposited by Plasma Enhanced Chemical Vapor Deposition System |
指導教授: |
柳克強
Leou, Keh-Chyang |
口試委員: |
吳永俊
王敏全 柳克強 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 氫化非晶矽碳化物薄膜 、電漿放射光譜 、電漿輔助化學氣相沉積 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
氫化非晶矽碳化物薄膜為高能隙(bandgap)材料,主要應用在異質接面太陽電池的window layer、結合非晶矽薄膜做tandem結構的太陽電池,以及做為智能玻璃窗的TFSC(薄膜太陽電池)元件部份等。為了提高開路電壓及提高穿透率之要求,提升光學能隙及縮小薄膜厚度變為重要的議題,其中薄膜材料的結構、光學特性及電性與沉積薄膜時電漿中重要物種及自由基的相對濃度有重要關聯性,因此研究電漿特性對沉積薄膜的影響為重要的議題。
本研究主旨為利用射頻27.12 MHz電漿輔助化學氣象沉積系統製備氫化非晶矽碳化物薄膜,主要做為TFSC(薄膜太陽電池)的i-layer之應用。並以光學放射光譜儀(OES)量測電漿建立一系列電漿放射光譜分析,研究電漿特性隨不同製程參數之變化(射頻功率26~58 W,CH4/SiH4氣體流量比0.93~2,氣體壓力100~200 Pa,H2/SiH4氣體流量比6~18)。另一方面,量測沉積薄膜的材料性質、光學性質及電特性。最後探討電漿物種改變對薄膜材料、光學、及電特性之影響。
研究發現當增加射頻功率(26 W~58 W),各特徵粒子放射光強度也增加,其中SiH*的放射光強度比CH放射光強度大(5.8倍~7.75倍),顯示沉積薄膜SiH*物種扮演關鍵的角色。SiH*放射光強度也證明SiH3前趨物沉積速率影響。另一方面,CH/SiH*放射光強度比值(OES ratio)可視為CH粒子與SiH*粒子的相對濃度比,研究顯示此OES ratio與光學能隙的結果趨勢一致。另外增加CH4/SiH4氣體流量比(0.93~2),結果顯示甲烷的氣體流量增加,造成薄膜的光學能隙上升,此結果與文獻一致。並發現光敏性隨光學能隙上升而下降,表示光敏感度下降。OES量測結果顯示,當CH4/SiH4氣體流量比增加兩倍,OES ratio顯示CH/SiH*上升約四倍,研究發現在氣相中CH物種與SiH*物種的相對濃度上升,此結果導向薄膜中C-Si比例的增加,並與光學能隙的實驗結果穩合。OES提供了一個以量測相對CH/SiH*粒子濃度,預測光學能隙隨操作參數之變化趨勢的方法。
Abstract
Si-C:H film has attracted a lot of attention recently for application in Si-based thin film solar cells, since its bandgap can be easily tunable over a range of 1.5-2.5 eV by simply varying the Si to C ratio in the film. Capacitively coupled SiH4/CH4/H2 plasmas are often employed for deposition of high quality Si-C:H film. A better understanding of the physical and chemical mechanisms in the plasma discharge is desirable. In this study, optical emission spectroscopy (OES) of five spectral lines, including H□ (656.2 nm), H□ (486.2 nm), SiH*(412.8 nm), CH (430.1 nm) and H2 Fulcher band ( 600-630 nm), has been carried out for analyzing the discharge characteristics during the deposition process. The material property, optical property of the film and electrical property are measured after deposition. The H2 Fulcher band intensity, an indicator of plasma density, is found to increase with rf power, as expected. The deposition rate also increases with rf power. Correlation between OES spectral line intensity ratio and bandgap for different operating condition is demonstrated. As the flow rate ratio of CH4/SiH4 increases from 0.93 to 2.00, the CH intensity increases accordingly, as expected, while SiH* intensity decreases little. On the other hand, the H□ and H2 Fulcher band vary little but both intensities drop as the CH4/SiH4 ratio reaches 2.00. These results indicate that CH4 plays an less important role for the ionization process in the SiH4/CH4/H2 plasma, as a result of its higher ionization potential than that of SiH4.
參考文獻
1. Chen, T., et al., Microcrystalline silicon thin film solar cells with microcrystalline silicon carbide window layers and silicon absorber layers both prepared by Hot-Wire CVD. Physica Status Solidi-Rapid Research Letters, 2010. 4(3-4): p. 61-63.
2. Yu, Z.R., et al., Wide optical band gap window layers for solar cells. Solar Energy Materials and Solar Cells, 2001. 66(1-4): p. 155-162.
3. Damian Pysch , et al., Amorphous silicon carbide heterojunction solar cells on p-type substrates. Thin Solid Films, 2011. 519( 8): p. 2550-2554.
4. Zhu, F., et al., Amorphous silicon carbide photoelectrode for hydrogen production directly from water using sunlight. Philosophical Magazine, 2009. 89(28-30): p. 2723-2739.
5. Stenger, I., et al., Strong orange/red electroluminescence from hydrogenated polymorphous silicon carbon light-emitting devices. Applied Physics Letters, 2008. 92(24).
6. Gao, W., et al., Approaches for large-area a-SiC : H photovoltaic-powered electrochromic window coatings. Journal of Non-Crystalline Solids, 2000. 266: p. 1140-1144.
7. Gao, W., et al., First a-SiC : H photovoltaic-powered monolithic tandem electrochromic smart window device. Solar Energy Materials and Solar Cells, 1999. 59(3): p. 243-254.
8. Bullock, J.N., et al., Semi-transparent a-SiC:H solar cells for self-powered photovoltaic-electrochromic devices. Journal of Non-Crystalline Solids, 1996. 198: p. 1163-1167.
9. Benson, D.K. et al., Design goals and challenges for a photovoltaic-powered electrochromic window covering. Solar Energy Materials and Solar Cells, 1995. 39(2-4): p. 203-211.
10. Granqvist, C.G., Electrochromic tungsten oxide films: Review of progress 1993-1998. Solar Energy Materials and Solar Cells, 2000. 60(3): p. 201-262.
11. Gao, W., et al., Novel electrochromic projection and writing device incorporating an amorphous silicon carbide photodiode. Journal of Non-Crystalline Solids, 2000. 266: p. 1233-1237.
12. Gregg, B.A., Photoelectrochromic cells and their applications. Endeavour, 1997. 21(2): p. 52-55.
13. Leftheriotis, G., et al., Development of photoelectrochromic devices for dynamic solar control in buildings. Solar Energy Materials and Solar Cells, 2010. 94(12): p. 2304-2313.
14. Conibeer, G., et al., Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films, 2008. 516(20): p. 6748-6756.
15. Basa, D.K., et al., Spectroscopic ellipsometry study of hydrogenated amorphous silicon carbon alloy films deposited by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2010. 107(2).
16. Ambrosone, G., et al., Correlation between structural and opto-electronic properties of a-Si1-xCx:H films deposited by plasma enhanced chemical vapour deposition. Thin Solid Films, 2010. 518(20): p. 5871-5874.
17. Akaoglu, B., et al., Carbon content influence on the optical constants of hydrogenated amorphous silicon carbon alloys. Optical Materials, 2008. 30(8): p. 1257-1267.
18. Akaoglu, B., et al., Influences of carbon content and power density on the uniformity of PECVD grown a-Si1-x : C-x : H thin films. Vacuum, 2006. 81(1): p. 120-125.
19. Silinskas, A., et al., Hydrogen influence on the structure and properties of amorphous hydrogenated carbon films deposited by direct ion beam. Thin Solid Films, 2008. 516(8): p. 1683-1692.
20. Salancon, E., et al., Redeposition of amorphous hydrogenated carbon films during thermal decomposition. Journal of Nuclear Materials, 2008. 376(2): p. 160-168.
21. Schwarz-Selinger, T., et al., Growth and erosion of amorphous carbon (a-C : H) films by low-temperature laboratory plasmas containing H and N mixtures. Journal of Nuclear Materials, 2007. 363: p. 174-178.
22. Neyts, E., et al., Reaction mechanisms and thin a-C : H film growth from low energy hydrocarbon radicals - art. no. 012020, in Radicals and Non-Equilibrium Processes in Low-Temperature Plasmas, Z.L. Petrovic, et al., Editors. 2007, Iop Publishing Ltd: Bristol. p. 12020-12020.
23. Cho, S.H., et al., The deposition behavior of SiC : H films deposited using a remote PECVD system with an HMWS precursor and C2H2 dilution gas. Journal of Ceramic Processing Research, 2007. 8(6): p. 393-396.
24. Kim, D.S., et al., Growth-mechanism of room-temperature deposited a-sic-h films by ion-assisted rf glow-discharge. Journal of the Electrochemical Society, 1995. 142(10): p. 3493-3504.
25. Chang, Y.L., Parametric Study of Microcrystralline Silicon Thin Films Deposition by Plasma Enhanced Chemical Vapor Deposition Using Plasma Optical Emission Spectroscopy, in Master Thesis. 2010.
26. Kaneko, T., et al., Growth kinetics in plasma CVD of a-SiC films from monomethylsilane revealed by in situ spectroscopy. Journal of Crystal Growth, 2002. 237: p. 1260-1263.
27. Thomas, L., et al., Microwave plasma chemical vapour deposition of tetramethylsilane: correlations between optical emission spectroscopy and film characteristics. Surface & Coatings Technology, 2001. 142: p. 314-320.
28. Chen, T., et al., Highly Conductive p-Type Silicon Carbon Alloys Deposited by Hot-Wire Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2010. 49(4).
29. Chen, T., et al., Aluminum doped silicon-carbon alloys prepared by hot wire chemical vapor deposition. physica status solidi (c), 2010. 7(3-4): p. 754-757.
30. Kunle, M., et al., Si-rich a-SiC:H thin films: Structural and optical transformations during thermal annealing. Thin Solid Films, 2010. 519(1): p. 151-157.
31. Hanel, A.M., et al., Amorphous SixC1-x:H single layers before and after thermal annealing: Correlating optical and structural properties. Solar Energy Materials and Solar Cells, 2010. 94(11): p. 1942-1946.
32. Descoeudres, A., et al., The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality. Applied Physics Letters, 2010. 97(18).
33. Mahan, A.H., et al., Influence of microstructure on the photoconductivity of glow-discharge deposited amorphous SiC-H and amorphous SiGe-H alloys. Applied Physics Letters, 1987. 50(6): p. 335-337.
34. Wang, J.Z., et al., Strongly enhanced tunable photoluminescence in polymorphous silicon carbon thin films via excitation-transfer mechanism. Applied Physics Letters, 2010. 97(22).
35. Ambrosone, G., et al., Study on the microstructural and overall disorder in hydrogenated amorphous silicon carbon films. Journal of Applied Physics, 2008. 104(12).
36. Smith, Z.E., et al., Photothermal and photoconductive determination of surface and bulk defect densities in amorphous-silicon films. Applied Physics Letters, 1987. 50(21): p. 1521-1523.
37. Matsuda, A., Microcrystalline silicon. Growth and device application. Journal of Non-Crystalline Solids, 2004. 338: p. 1-12.
38. Fantz, U., Spectroscopic diagnostics and modelling of silane microwave plasmas. Plasma Physics and Controlled Fusion, 1998. 40(6): p. 1035-1056.
39. Myong, S.Y., et al., Silicon-based thin-film solar cells fabricated near the phase boundary by VHFPECVD technique. Solar Energy Materials and Solar Cells, 2008. 92(6): p. 639-645.