研究生: |
黃政傑 Huang, Cheng-Chieh |
---|---|
論文名稱: |
利用模擬最佳化演算法求解有限成本及空間限制下機台選擇及緩衝區配置問題 Solving Buffer Allocation and Machine Selection Problem in Large Unreliable Assembly Production Line via Simulation Optimization |
指導教授: |
張國浩
Chang, Kuo-Hao |
口試委員: |
陳文智
Chen, Wen-Chih 陳子立 Chen, Tzu-Li |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 緩衝區配置問題 、機台選擇問題 、模擬最佳化 |
外文關鍵詞: | Buffer Allocation Problem, Machine Selection Problem, FlexSim, Rapid Screening Procedure, Adaptive Particle Global and Hyperbox Local Search, Revised RSP-APGHLS |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
緩衝區配置問題(Buffer Allocation Problem)是在建立生產系統上很重要的問題,本研究所探討的問題同時求解生產線上機台選擇(Machine Selection Problem)與緩衝區配置問題是一個NP-hard問題,本研究提出的數學模型為最大化單位時間產線產出量,限制為緩衝區空間限制及機台購買成本限制,而本研究考慮一個複雜的多產品組裝生產線系統,此生產線可為任意機台數量且生產線樣式也不受限制,並同時加入不同的隨機因子如機台產出率、損壞間隔時間以及維修時間並給予機台產出有機率損壞進行報廢再製,這些隨機因子皆可服從任意機率分配,因此無法用解析方式直接求得產線產出,故本研究採用模擬最佳化的方式來求解。
本研究在模擬產線產出方面使用FlexSim模擬軟體來進行模擬,並發展一套全新的兩階段演算法(Revised RSP-APGHLS)來處理此問題,Revised RSP-APGHLS的概念是將求解機台選擇0-1變數的快速篩選法(Rapid Screening Procedure)與求解緩衝區大小離散型變數的適應性粒子全域與超盒子區域演算法(Adaptive Particle Global and Hyperbox Local Search)做結合,並將本研究所提出之Revised RSP-APGHLS與現有常用的基因演算法、Nelder-Mead演算法以及適應性禁忌搜尋法做比較,經過數值分析實驗結果顯示本研究所提出之演算法的計算效果與效率表現更佳。
而本研究之主要貢獻如下,將緩衝區配置問題與機台選擇問題做結合並應用於一個複雜的多產品組裝生產線上,相較過去的研究更能符合現實生產線決策情況。另一貢獻為提出一個全新且在求解此緩衝區配置結合機台選擇問題十分有效率的演算法。
Buffer allocation problems are well-known topics in manufacturing system research. A proper allocation can significantly improve the system performance. In this study, we combine the buffer allocation problem and machine selection problem. We focus on how to choose the appropriate type of machine and decide the buffer size to be allocated under the limited cost constraint and limited total buffer size constraint while maximizing the production line throughput. This problem is a type of combinatorial optimization problem. This problem is also a NP-hard problem.
This study use FlexSim to simulate the production line and also develop an efficiency two-staged optimization algorithms which based on the Rapid Screening Procedure(RSP) and Adaptive Particle Global and Hyperbox Local Search(APGHLS) is called Revised RSP-APGHLS. We use Revised RSP to decide the better machine selection solution which is a zero-one variable and use APGHLS to decide the buffer allocation solution which is a discrete variable. Furthermore, we compare our algorithm with two common existing methods (Genetic Algorithm, Nelder-Mead Algorithm and Adaptive Tabu Search), finding that the Revised RSP-APGHLS outperforms both in terms of effectiveness and efficiency.
Amiri, M., & Mohtashami, A. (2011). Buffer allocation in unreliable production lines based on design of experiments, simulation, and genetic algorithm. The International Journal of Advanced Manufacturing Technology, 62(1-4), 371–383.
Bulgak, A. A. (2006). Analysis and design of split and merge unpaced assembly systems by metamodelling and stochastic search. International Journal of Production Research, 44(18-19), 4067–4080.
Chen, C. H., Lin, J., Yücesan, E., & Chick, S. E. (2000). Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems, 10(3), 251-270.
Chen C. H., He, D. H., Fu, M., Lee, L. H. (2008). Efficient Simulation Budget Allocation for Selecting an Optimal Subset. INFORMS Journal on Computing, vol. 20, no. 4, pp. 579–595.
Chow, W.-M. (1987). Buffer capacity analysis for sequential production lines with variable process times. International Journal of Production Research, 25(8), 1183-1196.
Daskalaki, S., & Smith, J. M. (2004). Combining routing and buffer allocation problems in serial-parallel queuing networks. Annals of Operations Research, 125, 47-68.
Demir, L., Tunali, S., & Eliiyi, D. T. (2010). An adaptive tabu search approach for buffer allocation problem in unreliable production lines. 24th Mini EURO conference on continuous optimization and information-based technologies in the financial sector, Selected Papers, pp. 207-212.
Demir, L., Tunali, S., & Løkketangen, A. (2011). A tabu search approach for buffer allocation in production lines with unreliable machines. Engineering Optimization, 43(2), 213–231.
Demir, L., Tunalı, S., & Eliiyi, D. T. (2012). An adaptive tabu search approach for buffer allocation problem in unreliable non-homogenous production lines. Computers & Operations Research, 39(7), 1477–1486.
Dolgui, A., Eremeev, A., Kolokolov, A., & Sigaev, V. (2002). A genetic algorithm for the allocation of buffer storage capacities in a production line with unreliable machines. Journal of Mathematical Modeling and Algorithms, 1, 89-104.
Gershwin, S. B., & Schor, J. E. (2000). Efficient algorithms for buffer space allocation. Annals of Operations Research, 93, 117-144.
Helber, S. (2001). Cash-flow-oriented buffer allocation in stochastic flow lines. International Journal of Production Research, 39(14), 3061–3083.
Jeong, K.-C., & Kim, Y.-D. (2000). Heuristics for selecting machines and determining buffer capacities in assembly systems. Computers & Industrial Engineering, 38(3), 341–360.
Koenigsberg, E. (1959). Production lines and internal storage-A review. Management Science, 5, 410-433
Kose, S. Y. (2010). Capacity improvement in a real manufacturing system using a hybrid simulation/genetic algorithm approach. M.S. Thesis, Dokuz Eylul University, Graduate School of Natural and Applied Sciences.
Lee, L. H., Chen, C. H., Chew, E. P., Li, J., Pujowidianto, N. A., & Zhang, S. (2010). A review of optimal computing budget allocation algorithms for simulation optimization problem. International Journal of Operations Research, 7(2), 19-31.
Massim, Y., Yalaoui, F., Amodeo, L., Chatelet, E., & Zeblah, A. (2010). Efficient combined immune-decomposition algorithm for optimal buffer allocation in production lines for throughput and profit maximization. Computers & Operations Research, 37(4), 611–620.
Mckay, M. D., Beckman, R. J., and Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, vol. 21, no. 2, pp. 239-245.
Nahas, N., Ait-Kadi, D., & Nourelfath, M. (2006). A new approach for buffer allocation in unreliable production lines. International Journal of Production Economics, 103, 873-881.
Nahas, N., Nourelfath, M., & Ait-Kadi, D. (2006). Selecting machines and buffers in unreliable series-parallel production lines. 2006 International Conference on Service Systems and Service Management.
Nahas, N., & Nourelfath, M. (2015). Buffer allocation, machine selection and preventive maintenance optimization in unreliable production lines. 2015 International Conference on Industrial Engineering and Systems Management (IESM).
Nourelfath, M., Nahas, N., & Ait‐Kadi, D. (2005). Optimal design of series production lines with unreliable machines and finite buffers. Journal of Quality in Maintenance Engineering, 11(2), 121–138.
Qudeiri, J. A., Yamamoto, H., Ramli, R., & Jamali, A. (2008). Genetic algorithm for buffer size and work station capacity in serial-parallel production lines. Artificial Life and Robotics, 12, 102-106.
Smith, J. M., Cruz, F. R. B., & van Woensel, T. (2010). Topological network design of general, finite, multi-server queueing networks. European Journal of Operational Research, 201(2), 427–441.
Spinellis, D., Papadopoulos, C., & Smith, J. M. (2000). Large production lne optimization using simulated annealing. International Journal of Production Research, 38(3), 509-541.
Spinellis, D. D., & Papadopoulos, C. T. (2000). A simulated annealing approach for buffer allocation in reliable production lines. Annals of Operations Research, 93, 373-384.
Tsai, S. C. (2013). Rapid Screening Procedures for Zero-One Optimization via Simulation. INFORMS Journal on Computing, 25(2), 317–331.
Tempelmeier, H. (2003). Practical considerations in the optimization of flow production systems. International Journal of Production Research, 41(1), 149-170.
Yuhui Shi, & Eberhart, R. C. (n.d.). Fuzzy adaptive particle swarm optimization. Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546)
林星妤. (2018). 目標式為條件期望值之模擬最佳化演算法架構. 清華大學工業工程與工程管理學系學位論文, 1-53.
李松霖. (2020). 離散型條件期望值之模擬最佳化演算法. 清華大學工業工程與工程管理學系學位論文, 1-53.