研究生: |
廖苔言 Tai-Yan Liao |
---|---|
論文名稱: |
神經細胞表膜電位去極化時,胞內鋅離子含量之調控機轉 |
指導教授: |
張兗君
Yen-Chung Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 鋅離子 、鋅離子螢光染劑 、神經細胞去極化作用 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋅離子是人體中含量第二高的微量元素僅次於鐵離子。在許多酵素的功能、控制基因的表現及神經訊息傳導中扮演重要的角色。在細胞內大部分的鋅離子緊密地結合在蛋白質中,像 metallothionein 或細胞膜上,僅有少部分的鋅離子呈游離狀態或是與其他物質以弱結合力結合在一起。而當神經細胞活化時,鋅離子與麩胺酸會被釋放到細胞外,而這些鋅離子對於細胞的影響至今仍尚未釐清。只知道細胞外的鋅離子對於 AMPA、NMDA 及 GABAA receptor 具有調控的能力。在我們的實驗中利用 TSQ 螢光染劑(Lot : 91K1125)染固定後的人工培養的大腦皮質細胞,發現能標定神經細胞內非游離態的鋅離子。由結果顯示這些可被 TSQ (Lot : 91K1125)標定到的TSQ- positive spot 可能是神經細胞中具弱結合力的鋅儲藏結構,於細胞去極化作用後細胞 process 上的 TSQ- positive spot 數目會有顯著的降低,且發現僅有極少數 spot 是位在前突觸端。然而,使用不同批號之 TSQ染劑(Lot : 073K0929)卻沒有相同的染色結果,因此 TSQ 之研究被迫中斷。而利用 Newport Green DCF 鋅離子螢光染劑觀察神經細胞在活的狀態下染色的情形,發現約有一半的細胞經 KCl 去極化作用後細胞內的螢光染劑會消失,相同的結果也在另一鋅離子螢光染劑子Rhod Zin-3實驗結果中觀察到,顯示此為細胞內與染劑結合的鋅離子釋放的結果。由藥理實驗結果推論,可能是由 voltage-gated Ca 2+ channel 調控細胞的去極化作用,造成細胞 exocytosis,使得麩胺酸由前突觸釋放,因而活化後突觸上 NMDA 及 non-NMDA receptor,而鋅離子則經由 non-NMDA receptor中的 Zn2+/Ca2+- permeable AMPA receptor-gated channels 釋放至細胞外。在過程中 NMDA receptor 可能擔任了某種調控的角色。
Aniksztejn, L., Charton, G., Ben-Ari, Y., (1987). Selective release of endogenous zinc from the hippocampal mossy fibers in situ. Brain Research 404, 58–64.
Assaf, S. Y. & Chung, S. H. (1984).Release of endogenous Zn2+ from brain tissue during activity. Nature (London) 308, 734–736.
Budd, S.L., Tenneti, L., Lishnak, T., Lipton, S.A., (2000). Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons.Proc. Natl. Acad. Sci. U. S. A. 97, 6161–6166.
Bush AI, Pettingell WH, Multhaup G, Paradis MD, Vonsattel JP, Gusella JF,Beyreuther K, Masters CL, Tanzi RE (1994b) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265,1464–1467.
Canzoniero, L.M.T., Sensi, S.L., Choi, D.W., (1997). Measurement of intracellular free zinc in living neurons. Neurobiol. Dis. 4, 275– 279.
Choi, D.W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1,623-34.
Choi, D.W., Koh, J.Y. (1998). Zinc and brain injury. Annu. Rev. Neurosci. 21, 347-75.
Choi, D.W., Yokoyama, M., Koh, J. (1988). Zinc neurotoxicity in cortical
cell culture. Neurosci. 24, 66-79.
Christine, C. W. & Choi, D. W. (1990). Effect of zinc on NMDA
receptor-mediated channel currents in cortical neurons. J. Neurosci. 10,
108–116.
Cole, T. B., Wenzel, H. J., Kafer, K. E., Schwartzkroin, P. A. & Palmiter, R. D. (1999). Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc. Natl. Acad. Sci. U. S. A. 96, 1716–1721
Dineley, K.E., Votyakova, T.V., Reynolds, I.J. ( 2003). Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J. Neurochem. 85, 563– 570.
Dong J, Atwood CS, Anderson VE, Siedlak SL, Smith MA, Perry G, Carey PR (2003) Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: raman microscopic evidence. Biochemistry 42, 2768–2773.
Frederickson, C.J., Hernandez, M.D., Goik, S.A., Morton, J.D., McGinty, J.F.(1988). Loss of zinc staining from hippocampal mossy fibers during kainic acid induced seizures: a histofluorescence study. Brain Res. 446, 383– 386.
Frederickson, C.J., Hernandez, M.D., McGinty, J.F. (1989).Translocation
of zinc may contribute to seizure-induced death of neurons. Brain Res.
480, 317-21.
Frederickson, C.J., Suh, S.W., Silva, D., Frederickson, C.J., Thompson, R.B. (2000). Zinc and Health: Current status and future directions. J. Nutr. 130:1471S-83S.
Haugland RP (1996) Fluorescent indicators for Zn2+ and other metals.In: Handbook of fluorescent probes and research chemicals, Ed 6 (Spence MTZ, ed), pp 531–540. Eugene, OR: Molecular Probes.
Howell, G. A., Welch, M. G. & Frederickson, C. J. (1984). Stimulation-induced uptake and release of zinc in hippocampal slices. Nature (London) 308, 736–738.
Huang X, Atwood CS, Moir RD, Hartshorn MA, Vonsattel J-P, Tanzi RE, Bush AI (1997) Zinc-induced Alzheimer’s Abeta 1–40 aggregation is mediated by conformational factors. J Biol Chem 272, 26464–26470.
Jiang, D., Sullivan, P.G., Sensi, S.L., Steward, O., Weiss, J.H. ( 2001). Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J. Biol. Chem. 276, 47524– 47529.
Koh, J.Y., Suh, S.W., Gwag, B.J., He, Y.Y., Hsu, C.Y., Choi,D.W.(1996). The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272, 1013–1016.
Koh, J.Y., Choi D.W.(1994). Zinc toxicity on cultured cortical neurons : involvement of N-methyl-D-aspartate receptors. Neurosci. 60, 1049-57.
Lee, J.Y., Cole, T.B., Palmiter, R.D., Koh, J.Y.(2000). Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J. Neurosci. (Online) 20, RC79.
Legendre, P. & Westbrook, G. L. (1990). The inhibition of single N-methyl-D-aspartate-activated channels by zinc ions on cultured rat neurones. J. Physiol. 429, 429–449.
Lorella M. T. Canzoniero, Dorothy M. Turetsky, Dennis W. Choi (1999). Measurement of intracellular free zinc concertrations accompanying zinc-included neuronal death. J. Neurosci.,19 RC31 1-6.
Mayer, M. L., Vyklicky, L. & Westbrook, G. L. (1989). Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones. J. Physiol. 415, 329–350.
Manzerra, P., Behrens, M.M., Canzoniero, L.M., Wang, X.Q., Heidinger, V., Ichinose, T., Yu, S.P., Choi, D.W., (2001). Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc. Natl. Acad. Sci. U. S. A. 98, 11055–11061.
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. U. S. A. 82, 4245–4249.
Peters S, Koh JY, Choi DW (1987) Zinc selectively blocks the action of N-Methyl-D-aspartate on cortical neurons. Science 236, 589 –593.
J. Perez-Clausell, G. Danscher. (1985). Intravesicular localization of zinc in rat telencephalic boutons: a histochemical study, Brain Res. 337, 91–98.
Pruss, R.M., Akeson, R.L., Racke, M.M., Wilburn, J.L. (1991)
Agonist-activated cobalt uptake identifies divalent cation-permeable
kainite receptors on neurons and glial cells. Neuron 7, 509-518.
Robert A. Colvin , Charles P. Fontaine, Meggan Laskowski, Dustin
Thomas (2003). Zn2+ transpoters and Zn2+ homeostasis in neurons. Eur. J.
Pharmacology.479, 171-185
Sensi, S.L., Canzoniero, L.M., Yu, S.P., Ying, H.S., Koh, J.Y., Kerchner,
G.A., Choi, D.W. (1997). Measurement of intracellular free zinc in living
cortical neurons: routes of entry. J. Neurosci. 17, 9554-64.
Sensi, S.L., Yin, H.Z., Carriedo, S.G., Rao, S.S., Weiss, J.H.(1999). Preferential Zn2+ influx through Ca2+-permeable AMPA/kainite channels triggers prolonged mitochondrial superoxide production. Proc. Natl. Acad. Sci. U. S. A. 96, 2414– 2419.
Sensi, S.L., Yin, H.Z., Weiss, J.H.( 2000). AMPA/ kainite receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction. Eur. J. Neurosci. 12, 3813– 3818.
Sensi, S.L., Ton-That, D., Weiss, J.H., (2002). Mitochondrial sequestration and Ca(2+)-dependent release of cytosolic Zn(2+) loads in cortical neurons. Neurobiol. Dis. 10, 100–108.
Sensi, S.L., Ton-That, D., Sullivan, P.G., Jonas, E.A., Gee, K.R., Kaczmarek, L.K., Weiss, J.H., (2003). Modulation of mitochondrial function by endogenous Zn2+ pools. Proc. Natl. Acad. Sci. U. S. A. 100, 6157–6162.
Suh, S.W., Chen, J.W., Motamedi, M., Bell, B., Listiak, K., Pons, N.F.,
Danscher, G., Frederickson, C.J.(2000). Evidence that synaptically released zinc contributes to neuronal injury after traumatic brain injury. Brain Res. 852, 268–273. 21, 395–401.
Takeda, A. (2000). Movement of zinc and its functional significance in the brain. Brain Res. Rev. 34, 137– 148.
Thompson, R.B., Peterson, D., Mahoney, W., Cramer, M., Maliwal, B.P., Suh, S.W., Frederickson, C., Fierke, C., Herman, P. (2002). Fluorescent zinc indicators for neurobiology. J. Neurosci. Methods 118, 63– 75. 12676– 12681.
Vogt, K., Mellor, J., Tong, G. & Nicoll, R. (2000). The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26, 187–196.
Weiss JH, Hartley DM, Koh JY, Choi DW (1993) AMPA receptor activation potentiates zinc neurotoxicity. Neuron 10, 43–49.
Westbrook, G.L., Mayer, M.L. (1987). Micromolar concentrations of Zn2+
antagonize NMDA and GABA responses of hippocampal neurons. Nature
328, 640-43.
Wudarczyk, J., Debska, G., Lenartowicz, E. (1999). Zinc as an inducer of the membrane permeability transition in rat liver mitochondria. Arch. Biochem. Biophys. 363, 1 – 8.
方怡之(2002) 胎鼠大腦神經元麩胺酸受器對鈣離子通透性之研究.
國立清華大學碩士論文.