研究生: |
耿緒祖 Hsu Tsu Keng |
---|---|
論文名稱: |
應用於核融合反應爐壁之Tyranno-SA纖維/碳化矽複合材料輻射效應之研究 |
指導教授: |
開執中
J.J. Kai 陳福榮 Fu Rong Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 核融合 、三射束 、碳化矽複合材料 、輻射效應 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要的目的是針對高熱傳導性、低活性、耐高溫且具有強大的優勢做為核融合反應爐爐壁之碳化矽纖維強化碳化矽複合材料的輻射效應之研究。在800°C的溫度下進行的10dpa/1500appm與100dpa/15000appm雙射束(Si+He)照射實驗,比較發現100dpa的劑量下才在Tyranno-SA纖維中發現氣泡,相信這是因為100dpa的劑量下具有過高的氦原子與空缺濃度,空缺捕獲氦原子而到達晶界來成核成長。繼續比較800°C與1000°C的溫度即時佈植雙射束(Si/He=100dpa/15000appm)的結果發現,1000°C的溫度下,材料中不論是基材或者纖維所析出的氣泡皆比800°C即時佈植實驗所析出的氣泡來的大,因為1000°C的溫度使得捕獲氦原子的空缺更容易移動至晶界來析出氣泡,而且晶界上的氣泡也容易在晶界上移動聚集。
在完成800°C與1000°C的即時雙射束(He/H=15000/6000appm)之結果發現:不論是800°C或1000°C,皆在Tyranno-SA纖維與碳化矽基材發現氣泡,顯示氫原子的擴散速率比氦原子來的快,促使氫原子到達晶界而增加成核的機會產生氣泡。
800°C即時三射束(Si/He/H=10dpa/1500appm/600appm)照射實驗下發現,Tyranno-SA纖維與基材亦皆有氣泡析出,文獻上指出:必須高達1000°C的退火溫度下進行三射束(Si/He/H=10dpa/1500appm/ 600appm)照射實驗才會在Tyranno-SA纖維發現氣泡,然而此實驗結果發現800°C就足夠讓纖維中的氫原子幫忙讓氣泡成核而析出。
根據以上的實驗結果發現:氫原子對於材料有嚴重的影響,所以未來必須在800°C~1000°C進行高劑量(~100dpa)的三射束照射實驗來進行比較,進而瞭解氫原子在材料中的機制,進而改善碳化矽/碳化矽之製程來使其達到應用的目的。
參考文獻
1. 李銀安,“受控熱核融合”, 1996, 牛頓出版社.
2. 曾煥華,“向核融合挑戰”, 1986, 銀禾文化出版商
3. Randy Harris, “Nonclassical Physics”, Addison Wesley.
4. 牛頓雜誌, 七月號/1998, 182期, p90~95.
5. L.H. Rovner and G.R. Hopkins, Nucl. Technol. 29 (1976) 274.
6. L.L. Snead, R.H. Jones, A. Kohyama, P. Fenici, J. Nucl. Mater. 233-237 (1996) 26.
7. P. Fenici, A.J. Frias Rebelo, R.H. Jones, A. Kohyama, L.L. Snead, J. Nucl. Mater. 258-263 (1998) 215.
8. Satoru Tanaka, Introduction to Fusion Reactor Engineering, 2001.
9. Y. Katoh, A. Kohyama, K. Morishita, A. Kimura, Introduction to Fusion Reactor Engineering, 2001.
10. G.R. Hopkins, R.J. Price, Nucl. Eng. Des. 2(1984) 1.
11. H. Golfier et al., Progress on the TAURO blanket system, Proceedings SOFT-21, 2000.
12. William D. Callister, Jr. “Material Science and Engineering An Introduction”, Wiley
13. Krishan K. Chawla, Composite Materials, 2nd edition, 1998, Springer.
14. A.R. Raffray, R.Jones, G. Aiello, M. Billone, L. Giancarli et al., Fusion Engng Des. 55 (2001) 55.
15. KRISHAN K. CHAWLA, Composite materials.
16. Michio Takeda, Yoshikazu Imai, Hiroshi Ichikawa, Noboru Kasai, Tadao Seguchi, Kiyohito Okamura, Comp. Sci. Tech. 59 (1999) 793-799.
17. Michio Takeda, Jun-ichi Sakamoto, Yoshikazu Imai, Hiroshi Ichikawa, Comp. Sci. Tech. 59 (1999) 813-819
18. Michio Takeda, Akira Urano, Jun-ichi Sakamoto, Yoshikazu Imai, J. Nucl. Mater. 258-263 (1998) 1594-1599
19. Hiroshi Araki, Hiroshi Suzuki, Wen Yang, Shinji Sato, Tetsuji Noda, J. Nucl. Mater. 258-263 (1998) 1540-1545
20. R. Yamada, T. Taguchi, N. Igawa, J. Nucl. Mater. 283-287 (2000) 574-578
21. M. Leparoux, L. Vandenbulcke, V. Serin, J. Sevely, S. Goujard, C. Robin-Brosse, J. Euro. Ceram. Soc. 18 (1998) 715-723
22. T. Hinoki, W. Zhang, A. Kohyama, S. Sato, T. Noda, J. Nucl. Mater. 258-263 (1998) 1567-1571
23. Edgar Lara-Curzio, Ceram. Eng. Sci. Proc. (1998) 597-612
24. Michio Takeda, Yoshikazu Imai, Yutaka Kagawa, Shu-Qi Guo, Mater. Sci. Eng. A286 (2000) 312-323
25. F. Rebillat, J. Lamon, A. Guette, Acta Mater. 48(2000) 4609-4618
26. 方柏傑,國立清華大學工程與系統科學研究所碩士論文,2002.
27. C.H. Henager, Jr., R.H. Jones, J. Am Ceram. Soc. 77(1994) 2381.
28. C. Droillard, J. Lamon, X. Bourrat, Mat. Res. Soc. Proc., 1995, 365, 371-376.
29. Droillard, C. and Lamon, J., J. Am. Ceram. Soc., 1996, 79(4), 849-858.
30. T. Noda, M. Fujita, H. Araki, A. Kohyama, Fusion Engineering and Design 61-62 (2002) 711-/716.
31. T. Nozawa, T. Hinoki, Y, Katoh, A, Koyhyama, Journal of Nuclear Materials 307–311 (2002) 1173–1177
32. W. Zhang, T. Hiniki, Y. Katoh, A. Kohyama, T. Noda, T. Muroga, J. Yu, J. Nucl. Mater. 258-263 (1998) 1577.
33. W. Yang, H. Araki, A. Kohyama, Y. Katoh, Q. Hu, H. Suzuki, T. Noda, Journal of Nuclear Materials 329–333 (2004) 539–543
34. Rebillat F., Lamon, J., Naslain R, Lara-curzio E, Ferber MK, Besman TM., J. Am. Ceram. Soc., 1998, 81(4), 965.
35. Lissart N, Lamon, J., Acta Mater 1997, 45(3), 1025.
36. Pasquier S, Lamon, J., Naslain R., Composites Part A, 1998, 29, 1157.
37. Droillard C, and Lamon, J. Am. Ceram. Soc., 1996, 79(4), 849.
38. Francis Rebillat, Jacques Lamon, Roger Naslain, Edgar Lara-Curzio, Mattison K. Ferber, and Theodore M. Besmann, J. Am. Ceram. Soc., 1998, 81(4), 965.
39. T. Taguchi, T. Nozawa, N. Igawa, Y. Katoh, S. Jitsukawa, A. Kohyama, T. Hinoki, L.L. Snead, Journal of Nuclear Materials 329–333 (2004) 572–576
40. 物理會刊十二卷一期1990年
41. Donald R. Olander, “Fundamental aspects of nuclear reactor fuel elements”, P.386-389
42. Ziegler, J. F. Biersack, J. P. Littmark, U. J.F. Ziegler, J.P. Biersac, “The stopping and range of ions in solids” Pergamon, 1985.
43. 科儀叢書3, 材料電子顯微鏡學, 國科會精儀中心.
44. 汪建民, 杜正恭, 材料分析.
45. D. B. Williams and C. B. Carter, “Transmission Electron Microscopy”, Plenum Press. New York & London, (1996)
46. R. F. Egerton, “Electron-energy loss spectroscopy in the electron microscopy “, Plenum Press, New York, (1996)
47. H. Shuman, C. F. Chang and A. P. Somlyo, Ultramicorsc., 19,121 (1986).
48. F. Hofer and P. Warbichler, Ultramucrosc., 63:21 (1996)
49. N. Bonnet, C. Coliex, C. Mory and M. Tence, Scanning Microscopy 2(Suppl.) 351 (1988)
50. A. Berger, J. Mayer and H. Kohl, Ultramicrosc., 55:101 (1994)
51. P. A. Crozier and R. F. Egerton, Ultramicrosc., 27:9 (1988)
52. T. Malis, S. Cheng and R. F. Egerton, J. Electron. Microsc. Tech. 8:8471 (1988)
53. T. Hinoki, W. Zhang, A. Kohyama, S. Sato, T. Noda, Journal of Nuclear Materials 258-263 (1998) 1567-1571
54. S. Sato, H. Serizawa, H. Araki, T. Noda, A. Kohyama, Journal of Alloys and Compounds 355 (2003) 142–147.
55. Tetsuji Noda, Mitsutane Fujita, Hiroshi Araki, Akira Kohyama, Fusion Engineering and Design, 61-62 (2002) 711-716.
56. T. Nozawa, T. Hinoki, Y. Katoh, A. Kohyama, Journal of Nuclear Materials 307–311 (2002) 1173–1177.
57. Tjacka Bus, Properties of Silicon Carbide, 2001.
58. Lim CS, JOURNAL OF MATERIALS SCIENCE 35 (12): 3029-3035 JUN 2000
59. T. Hinoki, W. Yang, T. Nozawa, T. Shibayama, Y. Katoh, A. Kohyama, Journal of Nuclear Material 289 (2001) 23-29.
60. Kishimoto, Y. Katoh, A. Kohyama, M. Ando, in: Effects of Radiation on Materials, ASTM STP 1405, American Society for Testing and Materials, 2001, p. 775.
61. Donald R. Olander, “Fundamental aspects of nuclear reactor fuel elements”.
62. Hasegawa, M. Saito, S. Nogami, K. Abe, R.H. Jones, H. Takahashi, Journal of Nuclear Materials 264 (1999) 355-358.
63. Hasegawa, S. Miwa, S. Nogami, A. Taniguchi, T. Taguchi, K. Abe, Journal of Nuclear Materials 329–333 (2004) 582–586.
64. H. Kishimoto, Y. Katoh, A. Kohyama, Journal of Nuclear Materials 307–311 (2002) 1130–1134.
65. T.S. Duh, K.M. Yin , J.Y. Yan , P.C. Fang , C.W. Chen ,J.J. Kai, F.R. Chen , Y. Katoh , A. Kohyama, Journal of Nuclear Materials 329–333 (2004) 518–523.
66. K. Hojou, S. Furuno, KN. Kushita, N. Sasajima, K. Izui, Nucl. Instr. and Meth. B 141(1-4): (1998) 148-153.
67. T.Tauguchi, N. Igawa, S. Miwa, E. Wakai, S. Jitsukawa, L.L. Snead, A. Hasegawa, Journal of Nuclear Materials 335 (2004) 508–514.
68. P. Jung, J. Nucl. Mater. 191-194 (1992) 377.
69. 陳建文,國立清華大學碩士論文(2002)
70. G.A. Esteban, A. Perujo, F. Legarda, L.A. Sedano, B. Riccardi, Journal of Nuclear Material, 307-311 (2002) 1430-1435