簡易檢索 / 詳目顯示

研究生: 黃郁喬
Huang,Yu-Chiao
論文名稱: 以非監督式演算法結合空間型構法則探討五大人格特質中的校園意象
Exploring the campus image of the Big Five personality traits using unsupervised algorithm and space syntax
指導教授: 區國良
Ou, Kuo-Liang
唐文華
Tarng, Wern-Huar
口試委員: 陳嘉琳
Chen, Chia-Lin
李政軒
Li, Cheng-Hsuan
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 學習科學與科技研究所
Institute of Learning Sciences and Technologies
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 235
中文關鍵詞: 數位足跡五大人格特質校園意象空間型構法則Wineglass「空間-時間」模型時間序列機器學習
外文關鍵詞: digital footprint, Big Five personality traits, campus image, space syntax, Wineglass space-time model, time series, Machine Learning
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文運用R語言探討國立清華大學學士班共168位學生於校園中為期一年的數位足跡,其中結合多維度資料集,例如五大人格特質(外向性、開放性、神經質、嚴謹性、友善性)、國立清華大學課務組課程總表、性別、年級、科系、院所、年、學期、月、星期、時、分、秒等(各式不同時間顆粒),加上多種視覺化套件(plot3d、scatterplot3d、Polygon、networkD3、sankeyNetwork),以及多種時間序列演算法(ETS、ARIMA、STL、NNAR、TBATS),再搭配Kevin Lynch (1960)城市意象、Bill Hillier與Julienne Hanson (1984)空間型構法則、G. W. Allport與H. S. Odbert (1936)五大人格特質,以及L. D. Baer, W. M. Gesler, 與T. R. Konrad (2000) Wineglass「空間-時間」模型概念,加以探討專屬於國立清華大學校園意象行為。
    研究結果發現,不同人格特質學生於行走路徑總量及特徵有所不同;不同建築物人流熱點有所差異;ARIMA及ETS時間序列演算法於國立清華大學校園建築物內預測人流熱點較為穩定;開課課程總表結合必選修因素與學生行走路徑呈負相關;學生年級與學生行走路徑呈負相關。本論文在各式資料中探索並發現未知關聯,對於未來「空間-時間」領域研究者提供各式研究方法及套件,可作為數位足跡相關研究之參考。


    This paper uses R language to explore the digital footprint of a total of 168 students from the National Tsinghua University undergraduate program on campus for one year, which combines multi-dimensional data sets, such as the big five personality traits (extroversion, openness, neuroticism, rigorousness, and friendliness), National Tsinghua University Curriculum Group Course List, gender, grade, department, institution, year, semester, month, week, hour, minute, second, etc. (various time granules), plus a variety of visualization packages (Plot3d, scatterplot3d, Polygon, networkD3, sankeyNetwork), and a variety of time series algorithms (ETS, ARIMA, STL, NNAR, TBATS), combined with Lynch(1960) the City of Image, Hillier (1984) space syntax, Gordon Allport Together with Henry Odbert (1936) Big Five Personality Traits, and Baer, Gesler, and Konrad (2000) Wineglass "space-time" model concept, they will explore the image behavior of the campus of National Tsinghua University.
    In the conclusion, it is found that students with different personality traits have different walking paths and characteristics; different buildings have different hotspots; ARIMA and ETS time series algorithms predict that the hotspots of pedestrians in the campus buildings of National Tsinghua University are relatively stable; classes start The curriculum summary table combined with the required elective factors are negatively correlated with the student's walking path; the grade of the student is negatively related with the student's walking path. This thesis mediates and discovers unknown associations in various materials, and provides various research methods and kits for researchers in the field of "space-time" in the future, hoping to be used as a reference for research on digital footprint.

    致謝 II 摘要 IV Abstract V 目錄 VII 表目錄 IX 圖目錄 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與問題 6 1.3 研究範圍與限制 8 第二章 文獻探討 10 2.1 數位足跡 10 2.2 校園意象 14 2.3 空間型構法則 19 2.4 五大人格 25 2.5 機器學習 28 2.6 時間序列 32 第三章 研究方法 42 3.1 研究流程 42 3.2 研究對象 43 3.3 研究工具 45 3.4 時間維度資料清洗 51 3.5 空間維度資料清洗 55 第四章 研究結果與討論 57 4.1 以三維旋轉視角探究個人數位足跡分佈特色 58 4.2 以三維固定視角探究相同學習背景學生行為特徵 65 4.3 以經緯度計算數位足跡移動面積 67 4.4 結合課表探究學生行為特徵 70 4.5 結合星期變數及人格特質探究學生行為特徵 88 4.6 結合時間序列與校園意象探討相異背景學生行為特徵 103 4.7 結合時間序列演算法推估建築物人流熱點 115 第五章 結論與建議 133 參考文獻 137 附錄一 Mini-Markers量表 153 附錄二 networkD3函數程式碼應用 156 附錄三 時間序列程式碼應用 159 附錄四 路徑總資料對照 163 附錄五 標註意象(道路)中英文對照 213 附錄六 標註意象(區域)中英文對照 218 附錄七 標註意象(節點)中英文對照 219 附錄八 標註意象(建築物)中英文對照 220 附錄九 標註意象(地標)中英文對照 222 附錄十 標註意象(開放空間)中英文對照 222 附錄十一 學生行走面積-性別與星期間的關係_敘述統計 223 附錄十二 五個年級與開課總數雙變異數分析 225 附錄十三 開放性與星期間成對樣本檢定 227 附錄十四 嚴謹性與星期間成對樣本檢定 229 附錄十五 五大人格五大級數互相之皮爾森相關性 231

    參考文獻
    英文部分
    A., Kadurin, S., Nikolenko, K., Khrabrov, A., Aliper, & A., Zhavoronkov. (2017). druGAN: An advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Molecular Pharmaceutics, 14, 3098-3104. doi:10.1021/acs.molpharmaceut.7b00346
    A.M.I., Turing. (1950). Computing machinery and intelligence. Mind: Mind.
    A.P., Valentine, & L.M., Kalnins. (2016). An introduction to learning algorithms and potential applications in geomorphometry and earth surface dynamics. Earth Surface Dynamics, 4, 445-460.
    Adriana, R., & Marian, D. (2011). Techniques for Statistical Data Visualization in GIS. Informatica Economica, 15(3), 72-79.
    Ai, P., Liu, Y., & Zhao, X. (2019). Big Five personality traits predict daily spatial behavior: Evidence from smartphone data. Personality and Individual Differences, 147, 285-291.
    Allport, G. W., & Odbert, H. S. (1936). Trait-names: A psycho-lexical study. Psychological Monographs, 47. doi:10.1037/h0093360
    Alzahrani, S. I., Aljamaan, I. A., & Al-Fakih, E. A. (2020). Forecasting the Spread of the COVID-19 Pandemic in Saudi Arabia Using ARIMA Prediction Model Under Current Public Health Interventions. Journal of infection and public health, 13, 914-919.
    Assemi, Behrang, Zahnow, Renee, Zapata-Diomedi, Belen, Hickman, Mark, & Corcoran, Jonathan. (2020). Transport-related walking among young adults: when and why? BMC public health, 20(244). doi:10.1186/s12889-020-8338-0
    Azucar, Danny, Marengo, Davide, & Settanni, Michele. (2018). Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis. Personality and Individual Differences, 124, 150-159. doi:10.1016/j.paid.2017.12.018
    Bachrach, Y., Kosinski, M., Graepel, T., Kohli, P., & Stillwell, D. (2012). Personality and patterns of Facebook usage. Paper presented at the 4th Annual ACM Web Science, Evanston, Illinois.
    Baer, L. D., Gesler, W. M., & Konrad, T. R. (2000). The wineglass model: tracking the locational histories of health professionals. Social Science & Medicine, 50, 317-329.
    Baer, Leonard D, & Butler, David R. (2000). Space-time modeling of grizzly bears. The Geographical Review, 90, 206-221.
    Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Operational Research Quarterly, 20, 451-468.
    Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in brief, 29.
    Berger, J.B., & Braxton, J.M. (1998). Revising Tinto’s interactionalist theory of student departure through theory elaboration: Examining the role of organizational attributes in the persistence process Research Higher Education, 39, 103-119.
    Bhardwaj, R. (2020). A Predictive Model for the Evolution of COVID-19. Transactions of the Indian National Academy of Engineering, 1-8.
    Bhowmick, Debjit, Winter, Stephan, Stevenson, Mark, & Vortisch, Peter. (2021). The impact of urban road network morphology on pedestrian wayfinding behavior. Computers, Environment and Urban Systems. doi:10.1016/j.compenvurbsys.2021.101635
    C.-C., Chang, & C.-J., Lin. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2. doi:10.1145/1961189.1961199
    C., Shen. (2018). A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resources Research, 54, 8558–8593.
    Cantis, Stefano De, Ferrante, Mauro, Kahani, Alon, & Shoval, Noam. (2016). Cruise passengers' behavior at the destination: Investigation using GPS technology. Tourism Management, 52, 133-150. doi:10.1016/j.tourman.2015.06.018
    Cao, J., Jiang, X., & Zhao, B. (2020). Mathematical modeling and epidemic prediction of COVID-19 and its significance to epidemic prevention and control measures. Journal of Biomedical Research & Innovation, 1, 1-19.
    Chakraborty, T., & Ghosh, I. (2020). Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis. Chaos, Solitons & Fractals, 135.
    Ching, Travers, Himmelstein, Daniel S., Beaulieu-Jones, Brett K., Kalinin, Alexandr A., Do, Brian T., Way, Gregory P., Ferrero, Enrico, Agapow, Paul-Michael, Zietz, Michael, Hoffman, Michael M., Xie, Wei, Rosen, Gail L., Lengerich, Benjamin J., Israeli, Johnny, Lanchantin, Jack, Woloszynek, Stephen, Carpenter, Anne E., Shrikumar, Avanti, Xu, Jinbo, Cofer, Evan M., Lavender, Christopher A., Turaga, Srinivas C., Alexandari, Amr M., Lu, Zhiyong, Harris, David J., DeCaprio, Dave, Qi, Yanjun, Kundaje, Anshul, Peng, Yifan, Wiley, Laura K., Segler, Marwin H. S., Boca, Simina M., Swamidass, S. Joshua, Huang, Austin, Gitter, Anthony, & Greene, Casey S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 15(141). doi:10.1098/rsif.2017.0387
    Clemen, R. (1989). Combining forecasts: A review and annotated bibliography with discussion. International Journal of Forecasting, 5, 559-608.
    Cleveland, R.B., Cleveland, W.S., & J.E. McRae, E.L. Thacker. (1990). STL: a seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6, 3-73.
    D., Shen, G., Wu, & H.-I., Suk. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering. doi:10.1146/annurev-bioeng-071516-044442.
    D.J., Lary, A.H., Alavi, & A.H., Gandomi. (2016). Walker A.L. Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7, 3-10. doi:10.1016/j.gsf.2015.07.003
    DazhiYang, ElynnWu, & JanKleissl. (2019). Operational solar forecasting for the real-time market. International Journal of Forecasting, 35(4), 1499-1519.
    Dill, Jennifer, Mohr, Cynthia, & Ma, Liang. (2014). How Can Psychological Theory Help Cities Increase Walking and Bicycling? Journal of the American Planning Association, 80(1), 36-51.
    Dramsch, Jesper Sören. (2020). 70 years of machine learning in geoscience in review. Advances in Geophysics, 61, 1-55.
    Dur, Banu Inanc Uyan. (2014). Data Visualization and Infographics In Visual Communication Design Education at The Age of Information. Journal of Arts and Humanities, 3(5). doi:https://doi.org/10.18533/journal.v3i5.460
    Dyson, R., & Renk, K. (2006). Freshmen adaptation to university life: Depressive symptoms, stress, and coping
    Clinical Psychology, 62(10), 1231-1244.
    Edwards, Deborah, & Griffin, Tony. (2013). Understanding tourists’ spatial behaviour: GPS tracking as an aid to sustainable destination management. Journal of Sustainable Tourism, 21(4), 580-595. doi:10.1080/09669582.2013.776063
    Fanelli, D., & Piazza, F. (2020). Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons & Fractals, 134.
    Faulds, M. C., Bauchmuller, K., Miller, D., Rosser, J. H., Shuker, K., Wrench, I., Wilson, P., & Mills, G. H. (2016). The feasibility of using ‘bring your own device’ (BYOD) technology for electronic data capture in multicentre medical audit and research. Anaesthesia, 71(1), 58-66. doi:10.1111/anae.13268
    Felsten, G. (2009). Where to take a study break on the college campus: An attention restoration theory perspective?
    . Environmental Psychology, 29, 160-167.
    Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A., & Colaneri, M. (2020). Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine, 26, 855-860.
    Groß, Sven, & Menzel, Anne. (2016). GPS-Tracking in touristischen Destinationen – Neue Software-Anwendung zur Erfassung des Mobilitätsverhaltens am Beispiel von Wanderern im Harz. Raumforschung und Raumordnung, 74, 51-68.
    Gwaltney, Chad, Coons, Stephen Joel, O'Donohoe, Paul, O'Gorman, Hannah, Denomey, Matthew, Howry, Cindy, & Ross, Jennifer. (2015). "Bring Your Own Device" (BYOD): The Future of Field-Based Patient-Reported Outcome Data Collection in Clinical Trials? Therapeutic innovation & regulatory science, 49(6), 783-791. doi:http://dx.doi.org/10.1177/2168479015609104
    Hafen, R., Anderson, D., W. Cleveland, R, Maciejewski, D, Ebert, A. Abusalah, Yakout, M., Ouzzani, M., & Grannis, S. (2009). Syndromic surveillance: STL for modeling, visualizing, and monitoring disease counts. BMC Medical Informatics and Decision Making, 9, 21.
    Hajrasouliha, A. . (2017). Campus score: Measuring university campus qualities. Landscape and Urban Planning, 158, 166-176.
    Haq, Saif, & Berhie, Girmay Kifle. (2017). Land Use and Transport Mode choices: Space Syntax Analysis of American Cities. Enquiry A Journal for Architectural Research, 14(1), 1-22. doi:10.17831/enq:arcc.v14i1.429
    Hasan, N. (2020). A Methodological Approach for Predicting COVID-19 Epidemic Using EEMD-ANN Hybrid Model. Internet of Things, 11.
    Hillier, Bill, & Hanson, Julienne. (1984). The social logicof space: Cambridge University Press.
    Holdgate, Matthew R, Meehan, Cheryl L, Hogan, Jennifer N, Miller, Lance J, Soltis, Joseph, Andrews, Jeff, & Shepherdson, David J. (2016). Walking Behavior of Zoo Elephants: Associations between GPS-Measured Daily Walking Distances and Environmental Factors, Social Factors, and Welfare Indicators. PLoS ONE, 14(7). doi:10.1371/journal.pone.0150331. eCollection 2016.
    I.H., Witten, & E., Frank. (2005). Practical machine learning tools and techniques. Morgan Kaufmann, 578.
    J., Kvalsvik. (2019). Before Machine Learning: handling seismic data with Python and segyio. Paper presented at the 81st EAGE Conference and Exhibition 2019.
    J.A. Hipp, Gulwadi, G.B., Alves, S., & Sequeira, S. (2016). The relationship between perceived greenness and perceived restorativeness of university campuses and student-reported quality of life. Environment and Behavior, 48 1292-1308.
    J.Sanchez, Manuel, MirjamNielen, Vazquez, J.Gunna, George, & I.Lewis, Fraser. (2012). Using seasonal-trend decomposition based on loess (STL) to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005–2011. Preventive Veterinary Medicine, 104(1-2), 65-73.
    Joohyun, L., & Mardelle Mccuskey, S. (2020). College Campuses and Student Walkability: Assessing the Impact of Smartphone Use on Student Perception and Evaluation of Urban Campus Routes. Sustainability, 12. doi:10.3390/su12239986
    Joseph, O., Senyefia, B. A., Cynthia, N. C., Eunice, O. A., & Yeboah, B. E. (2020). Covid-19 Projections: Single Forecast Model Against Multi-Model Ensemble. International Journal of Systems Science and Applied Mathematics, 5, 20-26.
    Jr, R. Styron. (2010). Student satisfaction and persistence: Factors vital to student retention
    Research. Higher Education, 6, 0.
    K.J., Bergen, P.A., Johnson, V., Maarten, & G.C., Beroza. (2019). Machine learning for data-driven discovery in solid earth geoscience. Science. Science, 363.
    K.T., Schütt, F., Arbabzadah, S., Chmiela, K.R., Müller, & A., Tkatchenko. (2017). Quantum-chemical insights from deep tensor neural networks. Nature Communication, 8. doi:10.1038/ncomms13890
    Kaplan, S. (1992). The restorative environment: Nature and human experience. Paper presented at the Role of horticulture in human well-being and social development: A national symposium, Arlington, Virginia.
    Khashei, M., & Bijari, M. (2010). An artificial neural network (p, d, q) model for timeseries forecasting. Expert systems with applications, 37, 479-489. doi:10.1016/j.eswa.2009.05.044
    L., Uieda. (2018). Verde: Processing and gridding spatial data using Green's functions. Journal of Open Source Software, 3. doi:10.21105/joss.00957
    Li, Fa, Long, Xi, Du, Shenglan, Zhang, Jiawen, Liu, Zizheng, Li, Moying, Li, Feng, Gui, Zhipeng, & Yu, Hanruo. (2015). Analyzing Campus Mobility Patterns of College Students by Using GPS Trajectory Data and Graph-Based Approach. Paper presented at the International Conference on Geoinformatics.
    Li, Yuan, Xiao, Longzhu, Ye, Yu, Xu, Wangtu, & Law, Andrew. (2016). Understanding tourist space at a historic site through space syntax analysis: The case of Gulangyu, China. Tourism Management, 52, 30-43. doi:10.1016/j.tourman.2015.06.008
    Liao, Chuan, Clark, Patrick E., Shibia, Mohamed, & Degloria, Stephen D. (2018). Spatiotemporal dynamics of cattle behavior and resource selection patterns on East African rangelands: evidence from GPS-tracking. International journal of geographical information science : IJGIS, 32(7), 1523-1540. doi:10.1080/13658816.2018.1424856
    Livas, Christos, Katsanakis, Ioannis, & Vayia, Eleni. (2019). Perceived impact of BYOD initiatives on post-secondary students’ learning, behaviour and wellbeing: the perspective of educators in Greece. Education and Information Technologies, 24(1), 489. doi:http://dx.doi.org/10.1007/s10639-018-9791-6
    Lu, Yi, Sarkar, Chinmoy, & Xiao, Yang. (2018). The effect of street-level greenery on walking behavior: Evidence from Hong Kong. Social Science & Medicine, 208, 41-49.
    Lynch, Kevin. (1960). The Image of the City. Joint Center for Urban Studies.
    Macarulla Rodriguez, Andrea, Tiberius, Christian, Bree, Roel, & Geradts, Zeno. (2018). Google timeline accuracy assessment and error prediction. Forensic Sciences Research, 3, 240-255. doi:10.1080/20961790.2018.1509187
    Maleki, Afshin, Nasseri, Simin, Aminabad, Mehri Solaimany, & Hadi, Mahdi. (2018). Comparison of ARIMA and NNAR Models for Forecasting Water Treatment Plant's Influent Characteristics KSCE Journal of Civil Engineering, 22(9).
    Nesteruk, I. (2020). Statistics-Based Predictions of Coronavirus Epidemic Spreading in Mainland China. Innovative Biosystems and Bioengineering, 4, 13-18.
    Nick Warren, Ruktanonchai, Corrine Warren, Ruktanonchai, Jessica Rhona, Floyd, & Andrew, J. Tatem. (2018). Using Google Location History data to quantify fine-scale human mobility. International Journal of Health Geographics, 17(1), 1-13. doi:10.1186/s12942-018-0150-z
    Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory 3rd ed. New York: McGraw-Hill.
    Panigrahi, Sibarama, & Behera, Himansu Sekhar. (2017). A hybrid ETS–ANN model for time series forecasting. Engineering Applications of Artificial Intelligence, 66, 49-59.
    Perone, Gaetano. (2020). Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy University of Bergamo, Italy
    Petukhova, Tatiana, Ojkic, Davor, McEwen, Beverly, Deardon, Rob, & Poljak, Zvonimir. (2018). Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, Canada. PLoS ONE, 1(6).
    Philip, S. (2018). Using students’ digital footprints to identify peer influences on academic outcomes. Dublin City University,
    Q., Kong, D.T., Trugman, Z.E., Ross, M.J., Bianco, B.J., Meade, & P., Gerstoft. (2019). Machine learning in seismology: Turning data into insights. Seismological Research Letters, 90, 3-14.
    R., Zuo, Y., Xiong, J., Wang, & E.J.M., Carranza. (2019). Deep learning and its application in geochemical mapping. Earth-Science Reviews, 192, 1-14.
    RC, Deo. (2015). Machine learning in medicine. Circulation, 132, 1920-1930.
    Rolnick, David, Donti, Priya L., Kaack, Lynn H., Kochanski, Kelly, Lacoste, Alexandre, Sankaran, Kris, Ross, Andrew Slavin, Milojevic-Dupont, Nikola, Jaques, Natasha, Waldman-Brown, Anna, Luccioni, Alexandra, Maharaj, Tegan, Sherwin, Evan D., Mukkavilli, S. Karthik, P, Konrad, Kording, Gomes, Carla, Ng, Andrew Y., Hassabis, Demis, Platt, John C., Creutzig, Felix, Chayes, Jennifer, & Bengio, Yoshua. (2019). Tackling climate change with machine learning. arXiv preprint, 1906.05433. 2019.
    S, Wang, & RM, Summers. (2012). Machine learning and radiology. Med Image Anal, 16, 933-951.
    Safari, Hossein, Nazidizaji, Sajjad, & Moridani, Fataneh Fakori. (2018). Social Logic of Cities and Urban Tourism Accessibility; Space Syntax Analysis of Kuala Lumpur City Centre. Space Ontology International Journal, 35-46.
    Saldarriaga, J. F., Kurgan, L., & Brawley, D. (2017). Visualizing Conflict: Possibilities for Urban Research. Urban Planning, 2(8).
    Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3(3), 210-229.
    Saucier, G. (1994). Mini-Markers: A Brief Version of Goldberg’s Unipolar Big-Five Markers. Journal of Personality Assessment, 63, 506-516.
    Singh, S., Parmar, K. S., Kumar, J., & Makkhan, S. J. S. (2020). Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19. Chaos, Solitons & Fractals, 135.
    Song, Yanjie. (2014). “Bring Your Own Device (BYOD)” for seamless science inquiry in a primary school. Computers & Education, 74, 50-60. doi:https://doi.org/10.1016/j.compedu.2014.01.005
    Song, Yanjie. (2016). “We found the ‘black spots’ on campus on our own”: development of inquiry skills in primary science learning with BYOD (Bring Your Own Device). Interactive Learning Environments, 24(2), 291-305. doi:10.1080/10494820.2015.1113707
    Sun, Guibo, Acheampong, Ransford A, Lin, Hui, & Pun, Vivian C. (2015). Understanding Walking Behavior among University Students Using Theory of Planned Behavior. Int J Environ Res Public Health, 12. doi:10.3390/ijerph121113794
    Sun, Guibo, Oreskovic, Nicolas M, & Lin, Hui. (2014). How do changes to the built environment influence walking behaviors? a longitudinal study within a university campus in Hong Kong. International Journal of Health Geographics, 13(28). doi:10.1186/1476-072X-13-28
    T.M, Mitchell. (1997). Machine learning. New York: McGraw-Hill.
    Thompson, E. R. (2008). Development and Validation of an International English Big-Five Mini-Markers. Personality and Individual Differences, 45, 542-548.
    Thoplan, R. (2014). Simple v/s sophisticated methods of forecasting for mauritius monthly tourist arrival data. International Journal of Statistics and Applications, 4, 217-223. doi:10.5923/j.statistics.20140405.01
    Tuite, A. R., Ng, V., Rees, E., & Fisman, D. (2020). Estimation of COVID-19 outbreak size in Italy. The Lancet infectious diseases, 20, 537.
    Wang, Shipeng, Cui, Lizhen, Liu, Lei, Lu, Xudong, & Li, Qingzhong. (202). Personality Traits Prediction Based on Users’ Digital Footprints in Social Networks via Attention RNN. 2020 IEEE International Conference on Services Computing (SCC), 2020, 7-11. doi:10.1109/SCC49832.2020.00015
    Wang, Ya-wen, Shen, Zhong-zhou, & Jiang, Yu. (2018). Comparison of ARIMA and GM(1,1) models for prediction of hepatitis B in China. PLoS ONE, 13(9).
    Weaver, Stephen D., & Gahegan, Mark. (2010). Constructing, Visualizing, and Analyzing A Digital Footprint. Geographical Review, 97, 324-350.
    Wieczorek, M., Siłka, J., & Woźniak, M. (2020). Neural network powered COVID-19 spread forecasting model. Chaos, Solitons & Fractals, 140.
    Xu, C., Dong, Y., Yu, X., Wang, H., & Cai, Y. (2020). Estimation of reproduction numbers of COVID-19 in typical countries and epidemic trends under different prevention and control scenarios. Frontiers of Medicine, 1-10.
    Yang, Dazhi, & Dong, Zibo. (2018). Operational photovoltaics power forecasting using seasonal time series ensemble. Solar energy, 166, 529-541. doi:10.1016/j.solener.2018.02.011
    Ying Wang, Changqing Huang, Jie Shan. (2015). An initial study on college students' daily activities using GPS trajectories. International Conference on Geoinformatics, pp.1-6.
    Z., Wang, H., Di, M.A., Shafiq, Y., Alaudah, & G., AlRegib. (2018). Successful leveraging of image processing and machine learning in seismic structural interpretation: A review. The Leading Edge, 37, 451-461.
    Zhang, G., Eddy Patuwo, B., & M., Y Hu. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14, 35-62. doi:10.1016/S0169- 2070(97)00044-7
    Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.
    Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European journal of operational research, 160, 501-514. doi:10.1016/j.ejor.2003.08.037
    Zhao, S., Lin, Q., Ran, J., Musa, S. S., Yang, G., Wan, W., Lou, Y., Gao, D., Yang, L., He, D., & Wang, M. H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019- nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 92, 214-217.
    Zhao, X. M., Shi, J. R., Duan, Y. Y., Lei, Y. X., & Hokao, K. (2015). The relationship between tourist’s path selection and space image: A case study of peripheral lines surrounding the West Lake. Lowland Technology International, 17, 27-38.
    Zhao, Y., Wei, H., Wu, S., Parvinzamir, F., Deng, Z., Zhao, X., Ersotelos, N., Dong, F., Clapworthy, G., & Liu, E. (2016). Topic-aware Visual Citation Tracing via Enhanced Term Weighting for Efficient Literature Retrieval. Computer and Information Science.
    Zhi-fang, W., Peng, L., & Ling, L. (2015). Analysis And Research of Student’s Behavior Trajectories Based on Big Data Positioned by Intelligent Terminal. Paper presented at the International Conference on Modelling, Identification and Control (ICMIC).

    中文部分
    王文錤. (2004). 博物館空間組構邏輯探討-以國立自然科學博物館與國立科學工藝博物館為例. (碩士). 逢甲大學,
    王振龍, & 胡永宏. (2007). 應用時間序列分析. 北京: 科学出版社.
    付春梅, 梁敬芝, & 劉向兵. (2011). 大學校園景觀的教育功效探析. 中國高教研究, 3, 62-63.
    吳怡霆. (2011). 以空間型構法則分析校園開放空間組構型態之初探. (碩士). 朝陽科技大學,
    李誠. (2012). 人力資源管理的12堂課: 台北:天下文化.
    周惠莉. (2003). 五大人格特質、性別角色與轉換型領導關聯性之研究. (碩士). 中原大學, 桃園縣.
    林崇偉. (2012). 關西行動!新竹縣關西鎮客庄文史數位行動導覽服務系統建置計畫. 國立交通大學: 國立交通大學 Retrieved from http://hdl.handle.net/11536/98413
    姜怡君. (2015). 校園經驗、學校認同與續讀意願相關性之探究:以臺灣雙北地區私立大學大一學生為例. [A Correlational Study of Freshmen’s Campus Experiences, School Identity and Student Retention in Private Universities in the Greater Taipei Area]. 學生事務與輔導, 54(3), 35-54.
    施君翰, 謝昆翰, 陳羿文, & 朱達仁. (2016). 馬祖觀光旅遊人次推估與預測. 休憩管理研究, 3卷1期(2016 / 04 / 01), 31-46.
    張春興. (2000). 教育心理學:三化取向的理論與實踐. 臺北市: 臺灣東華書局.
    張浩. (2018). 基於空間句法與認知地圖的高校校園意象研究. 安陽工學院學報
    92(2), 76-81.
    張齊軒, & 顏憶茹. (2016). 人格特質與工作滿意度、員工幸福感、組織承諾及工作績效之探討:以連鎖美髮業為例. (碩士). 國立臺中科技大學,
    張慧英. (2007). 中國傳統園林空間型構形式分析-以板橋林家花園為例 (碩士). 國立成功大學,
    曹音鵬. (2005). 校園空間意象之研究. (碩士). 國立臺東大學, 台東縣.
    許又壬. (2016). Facebook數位足跡為基之消費者購買決策型態預測方法發展. (碩士). 國立成功大學,
    郭亭君, & 曹銳勤. (2010). 已模糊時間序列模式預測日本來台旅遊人數. (碩士). 淡江大學,
    陳介山. (2008). GIS 輔助校園開放空間規劃之研究-以成功大學為例. (碩士). 國立成功大學,
    陳志榮. (2004). 以空間型構理論應用於大學校園安全空間規劃之研究以逢甲大學、靜宜大學為例. (碩士). 逢甲大學,
    陳周翊. (2008). 都市街道組構型態與人潮、車流預測模型探討-以空間 型構數位分析為工具. (碩士). 東海大學,
    陳建承, & 區國良. (2019). 以機器學習法分析大學生之校園數位足跡. (碩士). 國立清華大學,
    陳苾涵. (2012). 旅遊碳足跡之研究-以溪頭自然教育園區為例. (碩士). 國立臺灣大學,
    黃宗誠, & 李泳龍. (2010). 觀光遊憩區旅遊人數時間序列非線性變化特質實證-混沌理論之跨域應用. Paper presented at the 國土規劃論壇.
    黃春滿. (2008). 大溪、大甲、鹿港三城鎮之街道空間結構與產業分布歷史變遷. (碩士). 逢甲大學,
    廖心如. (2007). 以空間型構理論探討烏日鄉高鐵特定區開發前後都市空間型態之變遷. (碩士). 朝陽科技大學,
    蔡昀伶. (2016). 人格特質、實作滿意度及從農意願之研究-以大專生洄游農村計畫為例. (碩士). 國立中興大學, 台中市.
    蔡洪維. (2009). 空間型構理論之便捷值與都市土地公告現值關聯性之 研究─以台中市為例. (碩士). 朝陽科技大學,
    鄧景宜, 曾旭民, 李怡禎, & 游朝舜. (2011). "International English Big-Five Mini-Markers"之繁體中文版量表發展. [International English Big-Five Mini-Markers: Development of the Traditional Chinese Version]. 管理學報, 28(6), 579-615.
    龍宗彥. (2004). 以型構與行為分析觀點探討都市開放空間系統之設計 議題-以台北市信義計畫區為例. (碩士). 逢甲大學,
    謝子良, & 劉舜仁. (1999). 以 Space syntax 理論分析國內三大美術館空間 組織之研究. 建築學報, 13, 73-92.
    饒雅琳. (2004). 大學校園意象之研究. (碩士). 國立高雄大學, 高雄市.


    QR CODE