研究生: |
李國威 Kuo-Wei Lee |
---|---|
論文名稱: |
固定裝置-真空墊與碳纖維治療床對攝護腺癌病人之劑量影響評估 |
指導教授: |
薛燕婉
Yen-Wan Hsueh Liu 成佳憲 Chia-Hsien Cheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 真空墊 、碳纖維治療床 、攝護腺癌 、強度調控放射治療 、熱發光劑量計 、治療計畫系統 |
外文關鍵詞: | vacuum bag, carbon fiber couch, prostate cancer, IMRT, TLD, TPS |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由臨床上所觀察到非預期的放射線皮膚反應,推導出治療計畫系統忽略了部分裝置對皮膚表面劑量的影響,進而對真空墊與碳纖維治療床在攝護腺癌強度調控放射治療計畫中的影響進行評估,估算忽略真空墊與碳纖維治療床對皮膚表面、腫瘤與正常器官的劑量影響程度。
對以俯臥姿勢進行強度調控放射治療的攝護腺癌病人來說,135度與225度之射束會先穿過用來固定患者位置時使用的真空墊與碳纖維治療床。本研究先利用平行板游離腔推算真空墊與碳纖維治療床在電腦治療計畫系統中的組織等效厚度,並換算兩者併用相對於模擬定位床在該系統的組織等效厚度,同時以熱發光劑量計TLD-100H量測患者治療時之實際皮膚表面劑量。將兩種方法所得的結果作為修改電腦治療計畫系統設計這類治療的基礎,以旋繞疊加演算法重新進行劑量計算,驗證皮膚表面、腫瘤與正常器官之劑量準確性改善程度。
射束穿過真空墊與碳纖維治療床確實會對皮膚表面劑量造成顯著的影響,由組織等效厚度法推知併用兩者所對應的組織等效厚度達1公分。TLD的量測結果顯示治療射束到達皮膚前穿過這樣的組織等效厚度會使皮膚表面劑量上升約2倍。把真空墊與1.5公分模擬定位床納入計算後,電腦治療計畫系統可準確呈現皮膚表面劑量,而腫瘤與正常器官所呈現的劑量與未考慮此二者之前的計算,差異不超過2.6%。即真空墊與碳纖維治療床是否納入治療計畫對於位於病人深部的器官劑量影響有限,但腫瘤劑量會比原先預估值小。而根據修正後的病人外廓重新求得最佳化治療計畫可解決此問題,並真實呈現患者之皮膚劑量。
本研究顯示治療所用之真空墊與碳纖維治療床是否納入治療計畫確實對於患者皮膚表面、治療腫瘤與正常器官的劑量產生影響。以組織等效厚度換算方式將真空墊與治療床納入治療計畫,提供設計臨床治療計畫時一個迅速且準確的修正方法,此治療計畫修正方法可作為攝護腺癌強度調控放射治療之參考。
[1] 張寶樹,“放射治療物理學”,合記圖書出版社 (2004).
[2] Johnson, M.W., Griggs, M.A., Sharma, S.C., “A Comparison of Surface Doses for Two Immobilizing Systems,” Med. Dosim. 20, 191–194 (1995).
[3] Tsang, C., Martin, J.B., Peter, K.N.Yu., “Evaluation of Build-up Dose from 6 MV X-rays under Pelvic and Abdominal Patient Immobilization Devices,” Radiation Measurements, 35, 235-238 (2002).
[4]http://www.sinmed.nl/html/products/products_carbonfiber_inserts.html
[5] Ost, B.D., Vanregemorter, J., Shaeken, B., Van den Weyngaert, D., “The Effect of Carbon Fiber Inserts on the Build-up and Attenuation of High Energy Hhoton Beams,” Radiother. Oncol. 45, 275–277 (1997).
[6] Higgins, D.M., Whitehurst, P., Morgan, A.M., “The Effect of Carbon Fiber Couch Inserts on Surface Dose with Beam Size Variation,” Med. Dosim. 26, 251–254 (2001).
[7] AAPM TG21, “A Protocol for the Determination of Absorbed Dose from High Energy Photon and Electron Beams,” Med. Phys. 10, 741–771 (1983).
[8] AAPM TG51, “A Protocol for Clinical Reference Dosimetry of High-Energy Photon and Electron Beams,” Med. Phys. 26, 1847–1870 (1999).
[9] Turner, J.E., “Atoms, Radiation, and Radiation Protection,” 2nd ed. John Wiley & Son,
Inc., New York (1995).
[10] Khan, F.M., “The Physics of Radiation Therapy,” 3rd ed. Lippincott Williams and Wilkins, USA (2003).
[11] 王慧娟,“頭頸部放射治療的活體劑量驗證”,清華大學碩士論文 (2001).
[12] 陳永泰,“熱發光劑量計對同步輻射光回應” ,清華大學碩士論文 (1996).
[13] 林源山,“核子醫學之線上體內劑量評估” ,清華大學碩士論文 (2004).
[14] Veld, A.A., “Analysis of Accuracy in Dose and Position in Calculations of a Treatment Planning System for Blocked Photon Fields,” Radiother. Oncol. 45, 245–251 (1997).
[15] Harms, W.B., Low, D.A., Wong, J.W., Purdy, J.A., “A Software Tool for the Quantitative Evaluation of 3D Dose Calculation Algorithms,” Med. Phys. 25, 1830–1836 (1998).
[16] 林松彥,“放射治療旋繞疊加劑量演算法之準確度評估” ,清華大學博士論文 (2002).
[17] International Commission on Radiation Units and Measurements. “Prescribing, Recording, and Reporting Photon Beam Therapy,” ICRU Report 50 (1993).
[18] International Commission on Radiation Units and Measurements. “Prescribing, Recording, and Reporting Photon Beam Therapy (Supplement to ICRU Report 50),” ICRU Report 62 (1999).
[19] AAPM Radiation Therapy Committee TG53, “Quality Assurance Program for Radiotherapy Treatment Planning,” Med. Phys. 25, 1773-1836 (1998).
[20] Venselaar, J., Welleweerd, H., Mijnheer, B., “Tolerances for the Accuracy of Photon Beam Dose Calculations of Treatment Planning Systems,” Radiother. Oncol. 60, 191–201 (2001).
[21] Martens, C., Reynaert, N., Nilsson,P., et. al., “Underdosage of the Upper-Airway Mucosa for Small Fields as used in IMRT : A Comparison Between Radiochromic Film Measurements, Monte Carlo Simulations, and Collapsed Cone Convolution Calculations,” Med. Phys. 29, 1528–35 (2002).
[22] Aspradakis, M.M., Morrison, R.H., Richmond, N.D., “Experimental Verification of Convolution/superposition Photon Dose Calculations for Radiotherapy Treatment Planning,” Phys. Med. Biol. 48, 2873-2893 (2003).
[23] Radiation Therapy Oncology Group, “A Phase I/II Dose Escalation Study Using Three Dimensional Conformal Radiation Therapy For Adenocarcinoma of the Prostate,” RTOG 94-06 (2000).
[24] Radiation Therapy Oncology Group, “A Phase III Randomized Study of High Dose 3D-CRT/IMRT versus Standard Dose 3D-CRT/IMRT in Patients Treated for Localized Prostate Cancer,” , RTOG 0126 (2006).
[25] Lee, N., Chuang, C., Quivey, J. M., et. al., “Skin Toxicity Due To Intensity-Modulated
Radiotherapy for Head-and-Neck Carcinoma,” Int. J. Radiation Biol. Phys., 53, 630–637 (2002).