研究生: |
廖怡婷 Liao, Yi-Ting |
---|---|
論文名稱: |
摻雜金屬離子之二氧化鈦奈米顆粒及二氧化鈦/二氧化錫 奈米複合材料的合成與鑑定 Preparation and Characterization of Metal-Doped TiO2 Nanoparticles and TiO2-SnO2 Nanocomposites |
指導教授: |
楊家銘
Yang, Chia-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 光觸媒 、摻雜 、二氧化碳 、奈米顆粒 |
外文關鍵詞: | photocatalysis, doping, TiO2, nanoparticle |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The first part of this thesis is the preparation and characterization of the metal-doped TiO2 nanoparticles. The preparation method was based on a nonaqueous sol-gel route using benzyl alcohol as solvent and titanium tetrachloride together with other metallic compound as metal precursors. The obtained metal-doped TiO2 materials were characterized by ICP-AES, XRD, TGA-DSC, UV-Vis, XPS and TEM. The results indicated that these materials were in the nanometer scale and were with highly crystalline and pure anatase phase. The tin-doped TiO2 and cobalt-doped TiO2 nanoparticles both showed higher photocatalytic activity as compared to undoped TiO2 nanoparticles. The second part of this thesis is the preparation and characterization of the TiO2/SnO2 nanocomposites. The nanocomposites were synthesized by a seed-mediated growth approach, using SnO2 nanocrystals as seeds and a mixture of TiCl4 and benzyl alcohol as a growth solution. The XRD and TEM characterizations indicated that the TiO2/SnO2 nanocomposites exhibited a flower-like morphology with uniform size, and the two metal oxides were with rutile and cassiterite phases, respectively.
1. Kudo, A. and Miseki, Y. Chemical Society Reviews, 2009. 38(1): p. 253-278.
2. Bak, T., et al., International Journal of Hydrogen Energy, 2002. 27(10): p. 991-1022.
3. Fujishima, A. and K. Honda, Nature, 1972. 238(5358): p. 37-38.
4. Ni, M., et al., Renewable & Sustainable Energy Reviews, 2007. 11(3): p. 401-425.
5. Rajeshwar, K., Journal of Applied Electrochemistry, 2007. 37(7): p. 765-787.
6. Gratzel, M., Nature, 2001. 414(6861): p. 338-344.
7. Hoffmann, M.R., et al., Chemical Reviews, 1995. 95(1): p. 69-96.
8. Herrmann, J.M., Catalysis Today, 1999. 53(1): p. 115-129.
9. Linsebigler, A.L., G.Q. Lu, and J.T. Yates, Chemical Reviews, 1995. 95(3): p. 735-758.
10. Mills, A., R.H. Davies, and D. Worsley, Chemical Society Reviews, 1993. 22(6): p. 417-425.
11. Hu, J.S., et al., Angewandte Chemie-International Edition, 2005. 44(8): p. 1269-1273.
12. Wang, X.W., et al., Chemical Communications, 2009(23): p. 3452-3454.
13. Weinhardt, L., et al., Journal of Physical Chemistry C, 2008. 112(8): p. 3078-3082.
14. Zhang, S.C., et al., Journal of Solid State Chemistry, 2007. 180(4): p. 1456-1463.
15. Zhao, Z.G. and M. Miyauchi, Angewandte Chemie-International Edition, 2008. 47(37): p. 7051-7055.
16. Cozzoli, P.D., et al., Journal of the American Chemical Society, 2004. 126(12): p. 3868-3879.
17. Cozzoli, P.D., et al., Small, 2006. 2(3): p. 413-421.
18. Kitano, M., et al., Applied Catalysis A-General, 2007. 325(1): p. 1-14.
19. Diebold, U., Surface Science Reports, 2003. 48: p. 53-229.
20. Bouzoubaa, A., et al., Surface Science, 2005. 583(1): p. 107-117.
21. Zhang, J., et al., Journal of Physical Chemistry C, 2009. 113(5): p. 1698-1704.
22. Zhang, H.Z. and J.F. Banfield, Journal of Physical Chemistry B, 2000. 104(15): p. 3481-3487.
23. Zhang, J., et al., Journal of Physical Chemistry B, 2006. 110(2): p. 927-935.
24. Zhang, H.Z. and J.F. Banfield, Journal of Materials Chemistry, 1998. 8(9): p. 2073-2076.
25. Ovenstone, J. and K. Yanagisawa, Chemistry of Materials, 1999. 11(10): p. 2770-2774.
26. Cushing, B.L., V.L. Kolesnichenko, and C.J. O'Connor, Chemical Reviews, 2004. 104: p. 3893-3946.
27. Bradley, D.C., Chemical Reviews, 1989. 89(6): p. 1317-1322.
28. Hench, L.L. and J.K. West, 1990. 90(1): p. 33-72.
29. Lee, G.R. and J.A. Crayston, 1993. 5(6): p. 434-442.
30. Lu, Z.L., E. Lindner, and H.A. Mayer, Chemical Reviews, 2002. 102(10): p. 3543-3577.
31. Mehrotra, R.C. and A. Singh, Chemical Society Reviews, 1996. 25(1): p. 1-13.
32. Pierre, A.C. and G.M. Pajonk, Chemical Reviews, 2002. 102(11): p. 4243-4265.
33. Schwarz, J.A., C. Contescu, and A. Contescu, Chemical Reviews, 1995. 95(3): p. 477-510.
34. Wight, A.P. and M.E. Davis, Chemical Reviews, 2002. 102(10): p. 3589-3613.
35. Niederberger, M. and G. Garnweitner, Chemistry-A European Journal, 2006. 12(28): p. 7282-7302.
36. Burnside, S.D., et al., Chemistry of Materials, 1998. 10(9): p. 2419-2425.
37. Yanagisawa, K. and Ovenstone J., Journal of Physical Chemistry B, 1999. 103(37): p. 7781-7787.
38. Yin, H.B., et al., Journal of Materials Chemistry, 2002. 12(2): p. 378-383.
39. Cheng, H.M., et al., Chemistry of Materials, 1995. 7(4): p. 663-671.
40. Wang, C.C. and J.Y. Ying, Chemistry of Materials, 1999. 11(11): p. 3113-3120.
41. Zhang, H.Z., M. Finnegan, and J.F. Banfield, Nano Letters, 2001. 1(2): p. 81-85.
42. Niederberger, M., Accounts of Chemical Research, 2007. 40: p. 793-800.
43. Ba, J.H., et al., Advanced Materials, 2005. 17(20): p. 2509-2515.
44. Bilecka, I., I. Djerdj, and M. Niederberger, Chemical Communications, 2008(7): p. 886-888.
45. Garnweitner, G. and M. Niederberger, Journal of the American Ceramic Society, 2006. 89(6): p. 1801-1808.
46. Niederberger, M., M.H. Bartl, and G.D. Stucky, Chemistry of Materials, 2002. 14(10): p. 4364-4370.
47. Pinna, N. and M. Niederberger,. Angewandte Chemie-International Edition, 2008. 47(29): p. 5292-5304.
48. In, M. and C. Sanchez, Journal of Physical Chemistry B, 2005. 109(50): p. 23870-23878.
49. Mann, S., et al., 1997. 9(11): p. 2300-2310.
50. Brown, K.R. and M.J. Natan, Langmuir, 1998. 14(4): p. 726-728.
51. Yu, H., et al., Journal of the American Chemical Society, 2001. 123(37): p. 9198-9199.
52. Jana, N.R., L. Gearheart, and C.J. Murphy, Advanced Materials, 2001. 13(18): p. 1389-1393.
53. Sun, S. and H. Zeng, Journal of the American Chemical Society 2002. 124(28): p. 8204-8205.
54. Jana, N.R., L. Gearheart, and C.J. Murphy, Chemistry of Materials, 2001. 13(7): p. 2313-2322.
55. Nikoobakht, B. and M.A. El-Sayed, Chemistry of Materials, 2003. 15(10): p. 1957-1962.
56. Si, S., et al., Chemistry of Materials, 2004. 16(18): p. 3489-3496.
57. Umar, A.A. and M. Oyama, Crystal Growth & Design, 2007. 7(12): p. 2404-2409.
58. Wang, D.B., et al., Journal of Colloid and Interface Science, 2003. 261(2): p. 565-568.
59. Nowotny, M.K., et al., Journal of Physical Chemistry C, 2008. 112(14): p. 5275-5300.
60. Ba, J., et al., Small, 2007. 3(2): p. 310-317.
61. Zhang, H.Y., et al., Journal of Physical Chemistry C, 2008. 112(23): p. 8604-8608.
62. Clavel, G., et al., Advanced Functional Materials, 2007. 17: p. 3159-3169.
63. Bryan, J.D., et al., Journal of the American Chemical Society, 2004. 126(37): p. 11640-11647.
64. Chong, S.V., et al., Solid State Communications, 2008. 148(7-8): p. 345-349.
65. Dietl, T., et al., Science, 2000. 287(5455): p. 1019-1022.
66. Serpone, N., Journal of Physical Chemistry B, 2006. 110(48): p. 24287-24293.
67. Serpone, N., et al., Langmuir, 1994. 10(3): p. 643-652.
68. Xie, T.H., X. Sun, and J. Lin, Journal of Physical Chemistry C, 2008. 112(26): p. 9753-9759.
69. Lin, W.Y. and H. Frei, Journal of the American Chemical Society, 2005. 127(6): p. 1610-1611.
70. Nakamura, R., et al., Journal of the American Chemical Society, 2007. 129: p. 9596-9597.
71. Choi, W.Y., A. Termin, and M.R. Hoffmann, Journal of Physical Chemistry, 1994. 98(51): p. 13669-13679.
72. Ikeda, T., et al., Journal of Physical Chemistry C, 2008. 112(4): p. 1167-1173.
73. Liu, H., A. Imanishi, and Y. Nakato, Journal of Physical Chemistry C, 2007. 111(24): p. 8603-8610.
74. Niederberger, M., et al., Angewandte Chemie-International Edition, 2004. 43(17): p. 2270-2273.
75. Zhang, L.Z., et al., Chemistry-an Asian Journal, 2008. 3(4): p. 746-752.
76. Niederberger, M., et al., Journal of the American Chemical Society, 2004. 126(29): p. 9120-9126.
77. Zhang, L.Z., et al., Advanced Materials, 2007. 19(16): p. 2083-2086.
78. Clavel, G., et al., European Journal of Inorganic Chemistry, 2008(6): p. 863-868.
79. Wang, X.F., et al., Advanced Materials, 2006. 18(18): p. 2476-2480.
80. Sijakovic-Vujicic, N., et al., Journal of Sol-Gel Science and Technology, 2004. 30(1): p. 5-19.
81. Chen, D.W. and A.K. Ray, Water Research, 1998. 32(11): p. 3223-3234.
82. Priya, M.H. and G. Madras, Industrial & Engineering Chemistry Research, 2006. 45(2): p. 482-486.
83. Sivalingam, G., M.H. Priya, and G. Madras,. Applied Catalysis B-Environmental, 2004. 51(1): p. 67-76.
84. Tian, M., et al., Journal of Physical Chemistry C, 2008. 112(3): p. 825-831.
85. Elder, S.H., et al., Journal of the American Chemical Society, 2000. 122(21): p. 5138-5146.
86. Cao, Y.A., et al., New Journal of Chemistry, 2004. 28(2): p. 218-222.
87. Fresno, F., et al., Journal of Photochemistry and Photobiology A-Chemistry, 2005. 173(1): p. 13-20.
88. Fresno, F., et al., Physical Chemistry Chemical Physics, 2006. 8(20): p. 2421-2430.
89. Jing, L.Q., et al., Applied Catalysis B-Environmental, 2006. 62(3-4): p. 282-291.
90. Mahanty, S., S. Roy, and S. Sen, Journal of Crystal Growth, 2004. 261(1): p. 77-81.
91. Oliveira, M.M., D.C. Schnitzler, and A.J.G. Zarbin, Chemistry of Materials, 2003. 15(9): p. 1903-1909.
92. Sayilkan, F., et al., Materials Research Bulletin, 2008. 43(1): p. 127-134.
93. Sayilkan, H., Applied Catalysis a-General, 2007. 319: p. 230-236.
94. Schnitzler, D.C., et al., Chemistry of Materials, 2003. 15(24): p. 4658-4665.
95. Li, J. and H.C. Zeng, Journal of the American Chemical Society, 2007. 129(51): p. 15839-15847.
96. Lin, J., et al., Journal of Catalysis, 1999. 183(2): p. 368-372.
97. Uchiyama, H. and H. Imai, Chemical Communications, 2005(48): p. 6014-6016.
98. Long, R., Y. Dai, and B. Huang, Journal of Physical Chemistry C, 2009. 113(2): p. 650-653.
99. Chen, D.L. and L. Gao, Journal of Colloid and Interface Science, 2004. 279(1): p. 137-142.
100. Yu, J.G., S.W. Liu, and M.H. Zhou,. Journal of Physical Chemistry C, 2008. 112(6): p. 2050-2057.
101. Fresno, F., et al., Applied Catalysis B-Environmental, 2005. 55(3): p. 159-167.
102. Shi, Z.M., et al., Journal of Non-Crystalline Solids, 2007. 353(22-23): p. 2171-2178.
103. Li, J.X., et al., Applied Catalysis B-Environmental, 2009. 85(3-4): p. 162-170.
104. Zhu, J.F., et al., Journal of Photochemistry and Photobiology A-Chemistry, 2006. 180(1-2): p. 196-204.
105. Zhou, M.H., J.G. Yu, and B. Cheng, Journal of Hazardous Materials, 2006. 137(3): p. 1838-1847.
106. Zhu, J.F., et al., Journal of Molecular Catalysis a-Chemical, 2004. 216(1): p. 35-43.
107. Li, X.Y., P.L. Yue, and C. Kutal, New Journal of Chemistry, 2003. 27(8): p. 1264-1269.
108. Hung, W.C., et al., Applied Surface Science, 2008. 255(5): p. 2205-2213.
109. Cong, Y., et al., Journal of Physical Chemistry C, 2007. 111(28): p. 10618-10623.
110. Yu, J.G., et al., Materials Chemistry and Physics, 2006. 95(2-3): p. 193-196.
111. Gratzel, M. and R.F. Howe, Journal of Physical Chemistry, 1990. 94(6): p. 2566-2572.
112. Nagaveni, K., M.S. Hegde, and G. Madras, Journal of Physical Chemistry B, 2004. 108(52): p. 20204-20212.
113. Galindo, S., Physical Review B, 1984. 29(11): p. 6369.
114. Abazovic, N.D., et al., Journal of the American Ceramic Society, 2009. 92(4): p. 894-896.
115. Amadelli, R., et al., International Journal of Photoenergy, 2008: P. 1-9.
116. Lommens, P., et al.,. Chemistry of Materials, 2007. 19(23): p. 5576-5583.
117. Rao, C.N.R. and F.L. Deepak, Journal of Materials Chemistry, 2005. 15: p. 573-578.
118. Radovanovic, P.V., et al., Journal of the American Chemical Society, 2002. 124(51): p. 15192-15193.
119. Schwartz, D.A., et al., Journal of the American Chemical Society, 2003. 125: p. 13205-13218.
120. Huang, W.P., et al., Chemical Communications, 2000(15): p. 1415-1416.
121. Wu, M.M., et al., Chemistry of Materials, 2002. 14(5): p. 1974-1980.