簡易檢索 / 詳目顯示

研究生: 李育哲
Lee, Yu-Che
論文名稱: 電流輔助燒結Ge-Pb-Te系化合物之微結構與熱電特性效應
Microstructure and thermoelectric properties of electrically sintered Ge-Pb-Te compounds
指導教授: 廖建能
Liao, Chien-Neng
口試委員: 吳欣潔
Wu, Hsin-Jay
朱旭山
Chu, Hsu-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 66
中文關鍵詞: 熱電材料碲化鍺能帶理論
外文關鍵詞: Thermoelectric, GeTe, GPT
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碲化鍺系列化合物由於在中高溫下的優異傳輸性能和其相轉變引發的能帶收斂效應而在熱電研究中受到廣泛關注。但碲化鍺本身過高的電洞濃度使其熱電轉換效率低落,藉由摻雜與合金化工程改善其晶體缺陷和能帶結構,可以有效增加碲化鍺系列化合物的熱電性能。本研究透過電流輔助燒結Ge0.87Pb0.13Te (GPT)與Ge0.87Pb0.13Te 添加 3 mol% Sb2Te3(GPST+3)試片研究微結構演變、析出物和傳導性質的影響。與熱壓的GPT試片相比,電流輔助燒結的GPT試片更加緻密(理論密度的96%),且EDS元素分析顯示,電流輔助燒結的GPT試片中主相的鉛含量(6.5 at%)明顯比在熱壓GPT試片中的鉛含量(4.9 at%)高。此外本研究在GPT試片中摻入3 mol%的Sb2Te3,進一步調整GPT系統的缺陷濃度和傳輸性質。在室溫下,GPST+3 試片的功率因子可以達到11.82μW/ cm·K2,此功率因子的提升來自銻摻雜引起的電洞濃度改變。最後GPST+3試片在高溫量測下的峰值zT在600 K的溫度下達到1.3且平均zT 為 1.05。本研究提供一系統性的研究探討晶體缺陷和微觀結構如何影響GPT系列化合物的熱電性能與微結構。


    GeTe-based compounds have received intensive attention in thermoelectric research society due to their phase transformation behavior and promising transport properties in the mid-temperature regime. Generally, the thermoelectric properties of GeTe-based compounds can be improved by engineering crystal defects and electronic band structure through doping and alloying. In this study, Ge0.87Pb0.13Te (GPT) compounds were fabricated by a combined thermal and electrical sintering approach. The effects of thermal history and electrical stressing on microstructure evolution, precipitation and transport properties of Ge0.87Pb0.13Te and Ge0.87Pb0.13Sb0.06Te1.09 (GPST+3) are investigated. Compared to typical hot-pressed samples, the electrical sintered sample is more compacted (96% of theoretical density). The elemental analysis suggests that the Pb content in the electrically sintered GPT matrix is increased (6.5 at.%) compared to the hot-pressed GPT (4.9 at.%). Moreover, 3 mol% Sb2Te3 was added into the GPT to further tailor defects and transport properties of the GPT system. The GPST+3 demonstrates a high power factor of 11.82 μW/cmK2 at room temperature. The high temperature thermoelectric measurements reveal that the GPST+3 sample can reach zT = 1.3 at 600 K with a zTaverage of 1.05. How the crystal defect concentration and microstructure evolution affect the thermoelectric properties of the GPT systems are systematically studied.

    壹、緒論 1 1.1 研究背景 1 1.2 研究動機 5 貳、文獻回顧 7 2.1 碲化鍺系化合物 9 2.1.1 碲化鍺的晶體結構 9 2.1.2 碲化鍺的電子結構 10 2.1.3 碲化鍺之內部缺陷 13 2.2 碲化鍺鉛合金材料 15 2.2.1碲化鍺鉛合金之缺陷機制 16 2.2.2 GeTe-PbTe之相圖 17 2.3 銻摻雜碲化鍺鉛合金(Sb doped GPT) 19 2.3.1 銻摻雜碲化鍺鉛系列化合物缺陷機制 19 2.3.2 銻摻雜對於相轉變影響 20 2.4 火花電漿燒結製程材料對微結構影響 21 參、實驗流程及量測分析方法 24 3.1 試片製備 26 3.2 量測方法 27 3.2.1 Seebeck係數與四點式電阻量測 27 3.2.2 霍爾效應量測 29 3.2.3 熱傳導係數量測 31 3.2.4 表面形貌、析出物、成份分析 33 3.2.5 X光繞射分析 34 3.2.6 XRD Rietveld 分析 (XRD Rietveld Refinement Analysis) 34 3.2.7 熱重分析儀 35 肆、研究結果與討論 36 4.1電流輔助熱壓燒結GPT試片 36 4.1.1熱壓製程對GPT試片性能和組成的影響 36 4.1.2 GPT試片熱電傳輸特性 39 4.2 Sb元素摻雜對GPT系統的影響 47 4.2.1 GPST熔煉合金、塊材分析 48 4.2.2 GPST試片熱電傳輸特性 56 伍、結論 62 陸、參考文獻 63

    [1] H.S. Kim, W. Liu, G. Chen, C.-W. Chu, Z. Ren, Relationship between thermoelectric figure of merit and energy conversion efficiency, Proceedings of the National Academy of Sciences 112, 8205-8210 (2015).
    [2] D.M. Rowe, Thermoelectrics handbook: macro to nano. (CRC press, 2018).
    [3] G.S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics: basic principles and new materials developments. (Springer Science & Business Media , 2013), vol. 45.
    [4] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Materials for Sustainable Energy 7, 101-110 (2011).
    [5] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science 320, 634-638 (2008).
    [6] Y. Gelbstein, Z. Dashevsky, M.P. Dariel, Highly efficient bismuth telluride doped p‐type Pb0.13Ge0.87Te for thermoelectric applications, Physica Status Solidi (RRL)–Rapid Research Letters 1, 232-234 (2007).
    [7] A.D. LaLonde, T. Ikeda, G.J. Snyder, Rapid consolidation of powdered materials by induction hot pressing, Review of Scientific Instruments 82, 025104 (2011).
    [8] J. Freeman, A. Anderson, Thermal conductivity of amorphous solids, Physical Review B 34, 5684 (1986).
    [9] H.S. Kim, W. Liu, Z. Ren, The bridge between the materials and devices of thermoelectric power generators, Energy & Environmental Science 10, 69-85 (2017).
    [10] J. Li, Z. Chen, X. Zhang, Y. Sun, J. Yang, Y. Pei, Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides, NPG Asia Materials 9, e353-e353 (2017).
    [11] G. Tan, F. Shi, S. Hao, L.-D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe, Nature Communications 7, 12167 (2016).
    [12] Y. Gelbstein, O. Ben-Yehuda, E. Pinhas, T. Edrei, Y. Sadia, Z. Dashevsky, M. Dariel, Thermoelectric properties of (Pb, Sn, Ge)Te-based alloys, Journal of Electronic Materials 38, 1478-1482 (2009).
    [13] Y. Gelbstein, J. Davidow, S.N. Girard, D.Y. Chung, M. Kanatzidis, Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance, Advanced Energy Materials 3, 815-820 (2013).
    [14] S. Perumal, S. Roychowdhury, K. Biswas, High performance thermoelectric materials and devices based on GeTe, Journal of Materials Chemistry C 4, 7520-7536 (2016).
    [15] S. Perumal, S. Roychowdhury, D.S. Negi, R. Datta, K. Biswas, High thermoelectric performance and enhanced mechanical stability of p-type Ge1–xSbxTe, Chemistry of Materials 27, 7171-7178 (2015).
    [16] S. Perumal, S. Roychowdhury, K. Biswas, Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge 1− x Bi x Te, Inorganic Chemistry Frontiers 3, 125-132 (2016).
    [17] M. Jonson, G. Mahan, Mott's formula for the thermopower and the Wiedemann-Franz law, Physical Review B 21, 4223, (1980).
    [18] J.P. Heremans, C.M. Thrush, D.T. Morelli, Thermopower enhancement in lead telluride nanostructures, Physical Review B 70, 115334 (2004).
    [19] K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature 489, 414-418 (2012).
    [20] J. Li, X. Zhang, S. Lin, Z. Chen, Y. Pei, Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying, Chemistry of Materials 29 605-611, (2017).
    [21] J. He, M.G. Kanatzidis, V.P. Dravid, High performance bulk thermoelectrics via a panoscopic approach, Materials Today 16, 166-176 (2013).
    [22] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature 473, 66-69 (2011).
    [23] Y. Pei, A.D. LaLonde, H. Wang, G.J. Snyder, Low effective mass leading to high thermoelectric performance, Energy & Environmental Science 5, 7963-7969 (2012).
    [24] J. Lewis, Band structure and nature of lattice defects in GeTe from analysis of electrical properties, Physica Status Solidi (b) 35, 737-745 (1969).
    [25] D. Hohnke, H. Holloway, S. Kaiser, Phase relations and transformations in the system PbTe-GeTe, Journal of Physics and Chemistry of Solids 33, 2053-2062 (1972).
    [26] H.S. Lee, B.-S. Kim, C.-W. Cho, M.-W. Oh, B.-K. Min, S.-D. Park, H.-W. Lee, Herringbone structure in GeTe-based thermoelectric materials, Acta Materialia 91, 83-90 (2015).
    [27] H. Okamoto, Ge-Te (germanium-tellurium), Journal of phase equilibria 21 (2000).
    [28] Y. Tung, M.L. Cohen, Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe, Physical Review 180, 823 (1969).
    [29] J. Li, X. Zhang, X. Wang, Z. Bu, L. Zheng, B. Zhou, F. Xiong, Y. Chen, Y. Pei, High-performance GeTe thermoelectrics in both rhombohedral and cubic phases, Journal of the American Chemical Society 140, 16190-16197 (2018).
    [30] J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I.T. Witting, A. Faghaninia, Y. Chen, A. Jain, Low-symmetry rhombohedral GeTe thermoelectrics, Joule 2, 976-987 (2018).
    [31] J. Li, Z. Chen, X. Zhang, H. Yu, Z. Wu, H. Xie, Y. Chen, Y. Pei, Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics, Advanced Science 4, 1700341 (2017).
    [32] A.H. Edwards, A.C. Pineda, P.A. Schultz, M.G. Martin, A.P. Thompson, H.P. Hjalmarson, C.J. Umrigar, Electronic structure of intrinsic defects in crystalline germanium telluride, Physical Review B 73, 045210 (2006).
    [33] R. Tsu, W. Howard, L. Esaki, Optical and electrical properties and band structure of GeTe and SnTe, Physical Review 172, 779 (1968).
    [34] Y. Pei, A. LaLonde, S. Iwanaga, G.J. Snyder, High thermoelectric figure of merit in heavy hole dominated PbTe, Energy & Environmental Science 4, 2085-2089 (2011).
    [35] S. Li, J. Li, Q. Wang, L. Wang, F. Liu, W. Ao, Synthesis and thermoelectric properties of the (GeTe)1-x(PbTe) x alloys, Solid State Sciences 13, 399-403 (2011).
    [36] P. Ramachandrarao, S. Misra, T. Anantharaman, Thermodynamic and constitutional studies of the PbTe-GeTe system, Journal of Materials Science 10, 1849-1855 (1975).
    [37] S.G. Parker, J.E. Pinnell, L.N. Swink, Determination of the liquidus-solidus curves for the system PbTe-GeTe, Journal of Materials Science 9, 1829-1832 (1974).
    [38] A. Volykhov, L. Yashina, V. Shtanov, Phase relations in pseudobinary systems of germanium, tin, and lead chalcogenides, Inorganic Materials 42, 596-604 (2006).
    [39] Y. Gelbstein, Y. Rosenberg, Y. Sadia, M.P. Dariel, Thermoelectric properties evolution of spark plasma sintered (Ge0.6Pb0.3Sn0.1)Te following a spinodal decomposition, The Journal of Physical Chemistry C 114, 13126-13131 (2010).
    [40] X. Zhang, J. Li, X. Wang, Z. Chen, J. Mao, Y. Chen, Y. Pei, Vacancy manipulation for thermoelectric enhancements in GeTe alloys, Journal of the American Chemical Society 140, 15883-15888 (2018).
    [41] D.M. Hulbert, A. Anders, D.V. Dudina, J. Andersson, D. Jiang, C. Unuvar, U. Anselmi-Tamburini, E.J. Lavernia, A.K. Mukherjee, The absence of plasma in “spark plasma sintering”, Journal of Applied Physics 104, 033305 (2008).
    [42] U. Anselmi-Tamburini, S. Gennari, J. Garay, Z. Munir, Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions, Materials Science and Engineering: A 394, 139-148 (2005).
    [43] S.-S. Lim, J.-H. Kim, B. Kwon, S.K. Kim, H.-H. Park, K.-S. Lee, J.M. Baik, W.J. Choi, D.-I. Kim, D.-B. Hyun, Effect of spark plasma sintering conditions on the thermoelectric properties of (Bi0. 25Sb0. 75)2Te3 alloys, Journal of Alloys and Compounds 678, 396-402 (2016).
    [44] M. Samanta, K. Biswas, Low thermal conductivity and high thermoelectric performance in (GeTe) 1–2 x (GeSe) x (GeS) x: competition between solid solution and phase separation, Journal of the American Chemical Society 139, 9382-9391 (2017).
    [45] Y. Xiao, H. Wu, J. Cui, D. Wang, L. Fu, Y. Zhang, Y. Chen, J. He, S.J. Pennycook, L.-D. Zhao, Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity, Energy & Environmental Science 11, 2486-2495 (2018).
    [46] C.-N. Liao, K.-M. Liou, H.-S. Chu, Enhancement of thermoelectric properties of sputtered Bi–Sb–Te thin films by electric current stressing, Applied Physics Letters 93, 042103 (2008).
    [47] H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement, APL Materials 3, 041506 (2015).

    QR CODE