簡易檢索 / 詳目顯示

研究生: 張志偉
Chih-Wei Chang
論文名稱: 以微機電製程技術製作微探針於神經電信號量測之應用
MEMS based Microprobe for Neural Signals Measurement Application
指導教授: 方維倫
Weileun Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 78
中文關鍵詞: 微機電系統神經電信號神經探針SOI 晶片玻璃回熔三維神經探針陣列
外文關鍵詞: MEMS, Neural signal, Neural probe, SOI wafer, Glass reflow process, 3D microprobe array
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功的製作出二種可用於記錄生物體神經電信號的神經探針。第一種是利用微機電製程技術以SOI晶片製作矽神經探針,並以螯蝦作為實驗動物證實其效能。接下來將元件背面沉積聚對二甲苯(parylene)這種高分子膜薄作為接合劑,使原本屬於二維的矽神經探針在低溫下組裝成三維的神經探針陣列。此外,由於玻璃是具有絕緣以及無晶格面特性的材料,因此本研究運用玻璃回熔技術來製作以玻璃為基材的玻璃神經探針,此神經探針可和穿透晶片式導線整合,未來可組裝成三維神經探針陣列。經由動物實驗證實,玻璃神經探針也可偵測到老鼠大腦的神經電信號。


    This study has successfully demonstrated a microprobe sensor for neural recording. The first Si based neural probe has been implemented on SOI (silicon-on-insulator) wafer and then employed to detect the neural signal of crayfish. Moreover, the polymer was deposited on the microprobe backside. This polymer layer acts as a bonding agent for microprobe assembly. Thus, the monolithic in-plane 2D probes can be further integrated to form 3D probe array at low temperature. Moreover, glass is a dielectric and amorphous material which is more suitable for microprobe. Therefore, this study also manufacture glass based neural probe by glass reflow process, this 2D microprobe has embedded silicon vias for vertical integration of chips to further realize 3D microprobe array. Successfully neural recording from rat brain is also demonstrated.

    中文摘要…………………………………………………………..Ⅰ 英文摘要…………………………………………………………..Ⅱ目錄………………………………………………………………..Ⅲ 圖目錄……………………………………………………………..Ⅵ 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-2.1 神經細胞簡介 2 1-2.2 神經電訊號傳導機制 3 1-2.3 微電極陣列之發展歷程 5 1-2.4 針狀微電極陣列(微探針)之製作 8 1-2.5 神經探針之組裝 12 1-2.6 微電極陣列在生醫上的應用 13 1-3 研究動機與目標 15 第二章 神經探針之設計 28 2-1神經探針之特性 28 2-2 神經探針之設計考量 30 第三章 製程與結果 36 3-1 神經探針製程規劃 36 3-2 神經探針製程步驟 37 3-2.1 矽神經探針製程步驟 37 3-2.2 以高分子薄膜組裝三維微探針陣列 40 3-2.3 玻璃神經探針製程步驟 40 3-3 神經探針製程結果 42 第四章 測試與結果 52 4-1 簡易封裝 52 4-2 實驗架設與量測分析 53 4-2.1神經探針阻抗量測 53 4-2.2 神經電信號實驗架設與量測 54 第五章 結論與未來工作 62 5-1 結論 62 5-1.1 矽神經探針 62 5-1.2 玻璃神經探針 63 5-2 未來工作 64 參考文獻 68

    [1] T. Ichiki, T. Hara, T. Ujiie, Y. Horiike, and K. Yasuda ,” Development of bio-MEMS devices for single cell expression analysis,” Conference of Microprocesses and Nanotechnology, Shimane , Japan, Oct., 2001, pp 190-191.
    [2] O. Bruckman, G. Jullien, M. Ahmadi, and W. Miller, ” A MEMS DNA replicator and sample manipulator,” Proceedings of Circuits and Systems, Lansing, MI, Aug., 2000, pp 232-235.
    [3] K. Ikuta, S. Maruo, Y. Fukaya, and T. Fujisawa, ” Biochemical IC chip toward cell free DNA protein synthesis,” The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg , Germany, Jan., 1998, pp 131-136.
    [4] Z. Zhan, C. Dafu, Y. Zhongyao, and W. Li, ” Biochip for PCR amplification in silicon,” Conferences of Microtechnologies in Medicine and Biology, Lyon , France, Oct., 2000, pp 25-28.
    [5] T. Kikuchi, T. Ujiie, T. Ichiki, and Y. Horiike, ” Fabrication of quartz micro-capillary electrophoresis chips for health care devices,” Conferences of Microprocesses and Nanotechnology, Yokohama , Japan, July, 2001, pp 178-179.
    [6] S. Henry, D.V. McAllister, M. G. Allen, and M.R. Prausnitz, “Micromachined needles for the transdermal delivery of drugs,” IEEE The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg, Germany, Jan. 1998, pp494 – 498
    [7] www.sinica.edu.tw/as/advisory/journal/14-1/44-47.pdf
    [8] http://www.dls.ym.edu.tw/neuroscience/cells_c.htm
    [9]周先樂, 人體生理學 ,藝軒圖書出版社, 2004
    [10] E. R. Kandel, J. H. Schwartz, T. M. Jessell. Principles of neural
    science, New York : McGraw-Hill, 2000.
    [11] Ayanda Biosystems, http://www.ayanda-biosys.com/lts.html
    [12] P. T. Bhatti and K. D. Wise, “A 32-site 4-channel high density electrode array for a cochlear prosthesis“, Journal of Solid-State Circuits, 41, pp. 2965-2973, 2006.
    [13] 趙福杉,基本醫用電子學,教育部,1999。
    [14] M. Meister, L. Lagnado, and D. A. Baylor,” Concerted signaling by retinal ganglion cells,” Science, 270, pp 1207-1210, 1995.
    [15] I. H. Brivanlou, D. K. Warland, and M. Meister, ” Mechanisms of concerted firing among retinal ganglion cells,” Neuron, 20, pp 527-539, 1998
    [16] S. H. DeVries,“Correlated firing in rabbit retinal ganglion cells,” Journal of Neurophysiology, 81, pp 908-920, 1999
    [17] U. Egert, B. Schlosshauer, S. Fennrich, W. Nisch, M. Fejtl, T. Knott, T. Muller, and H. Hammerle, “A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays“, Brain research protocols, 2, pp. 229-242, 1998.
    [18] T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z. R. Abrams, E. Ben-Jacob, and Y. Hanein, "Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays," Nanotechnology, 18, pp. 035201-035206, 2007.
    [19] P. Griss, P. Enoksson, H. K. Tolvanen-Laakso, P. Merilainen, S. Ollmar, and G Stemme, “Micromachined Electrodes for Biopotential Measurements,” Journal Of Microelectromechanical System, 10, pp 10-16, 2001.
    [20] A. Hung, D. Zhou, R. Greenberg, and J. W. Judy,“Micromachined Electrodes for Retinal Prostheses,” IEEE-EMBS Special Topic Conference On Microtechnologies In The Medicine & Biology, Madison, Wisconsin, May, 2002, pp 76-79.
    [21] A. Hung, D. Zhou, R. Greenberg, and J. W. Judy,“Micromachined electrodes for high density neural stimulation systems,” MEMS’02, Las Vegas, Nevada, Jan, 2002, pp 56-59.
    [22] J.A. Bielen, W.L.C. Rutten, A.W. Schmidt, and R. Weiel, “Fabrication of multi electrode array structures for intra-neural stimulation: assessment of the LIGA method,” Engineering in Medicine and Biology Society, Amsterdam, Netherlands, Oct, 1996, pp 268-269.
    [23] H. Y. Chu, T. Y. Kuo, B. W. Chang, S. W. Lu, C. C. Chiao, and W. L. Fang, "Design and fabrication of novel three-dimensional multi-electrode array using SOI wafer," Sensors and Actuators a-Physical, 130, pp. 254-261, 2006.
    [24] J. Kruger,“Simultaneous individual recordings from many cerebral neuron:Techniques and results,” Reviews of Physiology, Biochemistry, and Pharmacology, 98, pp. 177-233, 1983.
    [25] K. D. Wise, J. B. Angell, and A. Starr, "An Integrated Circuit Approach to Extracellular Microelectrodes," IEEE Transactions On Biomedical Engineering, 17, pp. 238-247, 1970.
    [26] K. D. Wise,“Silicon microsystems for neuroscience and neural prostheses” IEEE Engineering medicine and biology magazine, 24, pp. 22-29, 2005.
    [27] K. Najafi, J. Ji, and K. D. Wise, “Scaling limitations of silicon multichannel recording probes,” IEEE Transactions On Biomedical Engineering, 37, pp. 1–11, 1990.
    [28] K. D. Wise, D.J. Andersen, J.F. Hetke, D.R. Kipke and K. Najarfi, ” Wireless implantable microsystems: high-density electronic interfaces to the nervous system,” Proceedings of the IEEE, 92, pp. 76-97, 2004.
    [29] J. Chen, K. D. Wise, J. F. Hetke, and S. C. Bledsoe, Jr.,“A multichannel neural probe for selective chemical delivery at the cellular level,” IEEE Transactions on Biomedical Engineering, 44, pp. 760-769, 1997.
    [30] G. G. Shahidi, “SOI technology for the GHz era”, IBM Journal of Research and Development, vol. 46, pp.121-131, 2002
    [31] P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, and U. G. Hofmann, “A 32-site neural recording probe fabricated by DRIE of SOI substrates“, Journal of Micromechanics and Microengineering, 12, pp. 414-419, 2002.
    [32] C. C. Wen, Y. T. Lee, S. R. Yeh, and W. Fang, “A novel neural recording probe with built-in load sensors,” IEEE sensors 2007 conference, Atlanta, Georgia, October, 2007, pp. 1128-1131.
    [33] Y. Y. Chen, T. S. Kuo, F. S. Jaw, "A laser micromachined probe for recording multiple field potentials in the thalamus" Journal of Neuroscience Methods, 139, pp. 99-109, 2004
    [34] G. E. Loeb, M. J. Bak, M. Salcman, and E. M. Schmidt, “Parylene as a chronically stable, reproducible microelectrode insulator,” IEEE Transactions on Biomedical Engineering, 24, pp. 121-128, 1977.
    [35] S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, and T. Suzuki, "Parylene flexible neural probes integrated with microfluidic channels," Lab on a Chip, 5, pp. 519-523, 2005.
    [36] J.P Seymour and D. R. Kipke, “Neural probe design for reduced tissue encapsulation in CNS,” Biomaterial, 28, pp. 3594-3607, 2007.
    [37] K. Lee, J. He, R. Clement, S. Massia, and B. Kim, “Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel,” Biosensors. and Bioelectronics, 20, pp. 404-407, 2004.
    [38] Q. Bai, K.D. Wise, and D. J. Anderson, “A High-Yield Microassembly Structure For Three-Dimensional Microelectrode Arrays,” IEEE Transactions On Biomedical Engineering, 47, pp 281-289, 2000.
    [39] Q. Bai, and K. D. Wise, “Single-Unit Neural Recording with Active Microelectrode Arrays,” IEEE Transactions On Biomedical Engineering, 48, pp 911-920, 2001.
    [40] A. C. Hoogerwerf, and K. D. Wise, “A Three-Dimensional Microelectrode Array for Chronic Neural Recording,” IEEE Transactions On Biomedical Engineering, 41, pp 1136-1146, 1994.
    [41] Y. Yao, M. N. Gulari, J. A. Wiler, and K. D. Wise, “A microassembled low-profile three-dimensional microelectrode array for neural prosthesis applications,” Journal of Microelectromechanical Systems, 16, pp. 977-988, 2007.
    [42] S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita, “ 3D flexible multichannel probe array,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 376 –370.
    [43] T. Suzuki, K. Mabuchi, and S. Takeuchi, “A 3D flexible parylene probe array for multichannel neural recording,” First International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, March, 2003, pp 154-156
    [44] S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita, "3D flexible multichannel neural probe array," Journal of Micromechanics and Microengineering, 14, pp. 104-107, 2004.
    [45] C. A. Thomas, P. A. Springer,G. E. Loeb, N. Y. Berwald, L. M. Okun, “A miniature microelectrode array to monitor the bioelectric activity of cultured cells,” Experimental Cell Research, 74, 61-66, 1972
    [46] J.P.Joseph, “A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection,” Biosensors and Bioelectronics, 18, 1339-1347, 2003
    [47] P. Manos, J. J. Pancrazio, M. G. Coulombe, W. Ma, and D. A. Stenger, “Characterization of rat spinal cord neurons cultured in defined media on microelectrode arrays,” Neuroscience Letters, 271, pp. 179-182, 1999.
    [48] H. Takahashi, T. Ejiri, M. Nakao, K. Matsumoto, F. Mase, Y. Hatamura, T. Hervé, “Surface Multipoint Microelectrode for Direct Recording of Auditory Evoked Potentials on the Auditory Cortex of a Rat,” Proceedings of 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, October 2000, pp. 512-517.
    [49] P.T. Bhatti, B.Y. Arcand, J. Wang, N.V. Butala, C.R. Friedrich, and K.D. Wise, “A high-density electrode array for a cochlear prosthesis,” IEEE International Conference of Solid-State Sensors Actuators (Transducers’03), Boston, MA, 2003, pp. 1750–1753.
    [50] T. E. Bell and K. D. Wise, and D. J. Anderson, “A Flexible Micromachined Electrode Array for a Cochlear Prosthesis,” Sensors and Actuators a-physical, 66, pp. 63-69, 1998.
    [51] P. Limousin, P. Krack, P. Pollack, A. Benazzouz, C. Ardouin, D. Hoffmann, and A. Benabid, “Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease,” The New England. Journal of Medicine, 339, pp. 1105–1111, 1998.
    [52] http://www1.vghtpe.gov.tw/msg/腦深層電刺激940701.htm
    [53] H. Kim and K. Najafi, “Characterization of low-temperature wafer bonding using thin-film parylene”, Journal of Microelectromechanical Systems, 14, pp. 1347-1355, 2005.
    [54] P. Merz, H.J. Quenzer, H. Bernt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” Transducers’03, Boston, June 8-12, 2003, pp. 258-261.
    [55] Fraunhofer ISIT, Itzehoe (DE) “Electrical feedthroughs using wafer-level glass-flow technology,” Achievements and Results Annual Report 2005, 2005.
    [56] C. W. Lin, C. P. Hsu, H.-A. Yang, W. C. Wang, and W. Fang, “Implementation of silicon-on-glass MEMS devices with embedded through-wafer silicon vias using a glass reflow process for wafer-level and 3D chip integration,” Journal of Micromechanics and Microengineering, 18, pp. 6-11, 2008
    [57] M. Kindlundh , P. Norlin , and U. G. Hofmann, “A neural probe process enabling variable electrode configurations” Sensors and Actuators b-Chemical, 102, pp. 51-58, 2004.
    [58] 曾信華,葉世榮 "多功能神經訊號量測系統設計", 生醫電子專輯, 電子月刊, 139, pp. 241-249 ,2007.
    [59] I. Obeid, James C. Morizio, Karen A. Moxon,Miguel A. L. Nicolelis,
    and Patrick D. Wolf, “Two Multichannel Integrated Circuits for
    Neural Recording and Signal Processing,”IEEE Transactions on
    Biomedical Engineering, 50, pp.255-258, 2003.
    [60] D. Cattaert and D. Le Ray, “Adaptive motor control in crayfish,”
    Progress in Neurobiology, 63, 199–240, 2001

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE