簡易檢索 / 詳目顯示

研究生: 劉富翃
Liu, Fu-Hong
論文名稱: 最小總和排程問題在不同方案下的研究
A Study of Min-Sum Scheduling Problems in Different Scenarios
指導教授: 韓永楷
Hon, Wing-Kai
口試委員: 李哲榮
Lee, Che-Rung
廖崇碩
Liao, Chung-Shou
謝孫源
彭勝龍
蔡孟宗
Tsai, Meng-Tsung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 63
中文關鍵詞: 天際線排程問題智慧電網排程問題線上模型最佳線上演算法
外文關鍵詞: Skyline scheduling problem, Smart grid scheduling problem, Online model, Optimal online algorithm
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究兩個最小總和排程問題,天際線排程問題與智慧電網排程問題
    首先,我們考慮在使用較高顏色索引時成本隨之增加的環境下進行線段著色問題。線上任何點的顏色成本是該點使用的最大顏色索引的成本,而整體著色的成本是數線上所有點成本的加總。最低成本的著色稱為最低天際線著色問題。我們證明了計算最小天際線著色問題是很難的,並開始研究線段逐一到達的線上設定。對於線性顏色成本的情況,我們給出了漸近最佳的線上演算法,並給出了該問題的一些延伸的結果。此外,我們考慮了該問題的另一種變化形,其中線段事先分群好且每個要著不同顏色,以最大程度地減少著色成本。我們證明了該變化形問題是很難的,並為此提出了一個兩倍近似演算法。
    此外,我們研究了單位大小輸入的智慧電網問題中的線上排程。我們證明貪婪法是解決該問題的最佳線上演算法。通常,要證明是最佳的線上演算法是通過指出競爭率的上限並顯示具有相對應競爭率的下限。但是,我們的分析沒有採用這種方法。相反地,我們直接證明了最佳性而沒有給出競爭比率的確切界限。這個結果直接影響到指定機器安排問題的結果。


    We study two min-sum scheduling problems, skyline scheduling problem and smart grid scheduling problem.
    First, we consider the interval coloring problem in a setting where an increasing cost is associated with using a higher color index. The cost of a coloring at any point of the line is the cost of the maximum color index used at that point, and the cost of the overall coloring is the integral of the cost over all points on the line. A coloring of minimum cost is called a minimum skyline coloring. We prove that the problem of computing a minimum skyline coloring is NP-hard and initiate the study of the online setting, where intervals arrive one by one. We give an asymptocially optimal online algorithm for the case of linear color costs and present further results for some generalizations of the problem. Also, we consider the variant of the problem where the intervals are grouped in advance and each is colored by a distinct color to minimize the cost of the coloring. We show that this problem variant is NP-hard and present a 2-approximation algorithm for it.
    In addition, we study online scheduling of unit-sized jobs in the smart grid problem. We show that the greedy algorithm is an optimal online algorithm for the problem. Typically, an online algorithm is proved to be an optimal online algorithm through bounding its competitive ratio and show- ing a lower bound with matching competitive ratio. However, our analysis does not take this approach. Instead, we prove the optimality without giving the exact bounds on competitive ratio. The results have direct implication on restricted assignment problem.

    1 Introduction 1 1.1 SkylineSchedulingProblem................... 1 1.2 SmartGridSchedulingProblem................. 2 1.2.1 RestrictedAssignmentProblem. . . . . . . . . . . . . 3 1.3 OurContribution......................... 4 2 Literature Review 7 2.1 Skyline Scheduling Problem................... 7 2.2 Smart Grid Scheduling Problem................. 8 2.3 RestrictedAssignmentProblem................. 9 3 Preliminaries and Definitions 11 3.1 Skyline Scheduling Problem................... 11 3.2 Smart Grid Scheduling Problem and Restricted Assignment Problem.............................. 13 4 Skyline Scheduling Problem 17 4.1 NP-hardness of Skyline..................... 17 4.2 Online Algorithms for Skyline when Lambda(i)=i . . . . . . . . . 19 4.2.1 Bounded Length Intervals................ 20 4.2.2 Arbitrary Length Intervals ............... 23 4.2.3 Lower Bound ....................... 25 4.3 Extensions............................. 26 4.3.1 Uniform Color Capacity................. 26 4.3.2 Generalized Color Cost Function . . . . . . . . . . . . 29 4.3.3 Circular Graphs ..................... 30 5 Permutation Problem of Skyline Scheduling 33 5.1 NP-hardness ........................... 34 5.2 Approximation Algorithm .................... 35 6 Smart Grid Scheduling Problem 41 6.1 Framework of analysis ...................... 41 6.2 Optimality of the greedy algorithm............... 43 6.2.1 The job instance J_G for the greedy algorithm G . . . . 43 6.2.2 A job instance J_A for an online algorithm A . . . . . 49 7 Conclusion 55 Bibliography 57

    [1] U. Adamy and T. Erlebach. Online coloring of intervals with band- width. In WAOA, pages 1–12, 2003.
    [2] M. Alicherry and R. Bhatia. Line system design and a generalized coloring problem. In ESA, pages 19–30, 2003.
    [3] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling. In SODA, pages 493–500, 1997.
    [4] J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, and O. Waarts. On-line rout- ing of virtual circuits with applications to load balancing and machine scheduling. J. ACM, 44(3):486–504, 1997.
    [5] Y. Azar. On-line load balancing. In A. Fiat and J. Woeginger, editors, Online Algorithms: The State of the Art, pages 178–195. Springer, 1998.
    [6] Y. Azar, A. Z. Broder, and A. R. Karlin. On-line load balancing. Theor. Comput. Sci., 130(1):73–84, 1994.
    [7] Y. Azar, L. Epstein, Y. Richter, and G. J. Woeginger. All-norm ap- proximation algorithms. J. Algorithms, 52(2):120–133, 2004.
    [8] Y. Azar, A. Fiat, M. Levy, and N. S. Narayanaswamy. An improved algorithm for online coloring of intervals with bandwidth. Theor. Com- put. Sci., 363(1):18–27, 2006.
    [9] Y. Azar, B. Kalyanasundaram, S. A. Plotkin, K. Pruhs, and O. Waarts. On-line load balancing of temporary tasks. J. Algorithms, 22(1):93–110, 1997.
    [10] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assign- ments. J. Algorithms, 18(2):221–237, 1995.
    [11] Y. Bartal, A. Fiat, H. J. Karloff, and R. Vohra. New algorithms for an ancient scheduling problem. J. Comput. Syst. Sci., 51(3):359–366, 1995.
    [12] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press, 1998.
    [13] M. Burcea, W. Hon, H. Liu, P. W. H. Wong, and D. K. Y. Yau. Schedul- ing for electricity cost in a smart grid. J. Scheduling, 19(6):687–699, 2016.
    [14] S. Caron and G. Kesidis. Incentive-based energy consumption schedul- ing algorithms for the smart grid. In SmartGridComm, pages 391–396. IEEE, 2010.
    [15] J. Chang, H. N. Gabow, and S. Khuller. A model for minimizing active processor time. Algorithmica, 70(3):368–405, 2014.
    [16] J. Chang, S. Khuller, and K. Mukherjee. LP rounding and combinato- rial algorithms for minimizing active and busy time. In SPAA, pages 118–127, 2014.
    [17] V. Chau, S. Feng, and N. K. Thang. Competitive algorithms for demand response management in smart grid. In LATIN, pages 303–316, 2018.
    [18] C. Chen, K. G. Nagananda, G. Xiong, S. Kishore, and L. V. Sny- der. A communication-based appliance scheduling scheme for consumer- premise energy management systems. IEEE Trans. Smart Grid, 4(1):56–65, 2013.
    [19] M. Chrobak and M. Slusarek. On some packing problem related to
    dynamic storage allocation. ITA, 22(4):487–499, 1988.
    [20] T. Ebenlendr, M. Krc ́al, and J. Sgall. Graph balancing: A special case of scheduling unrelated parallel machines. Algorithmica, 68(1):62–80, 2014.
    [21] European Commission. Europen smartgrids technology platform.
    ftp://ftp.cordis.europa.eu/pub/fp7/energy/docs/smartgrids_ en.pdf, 2006.
    [22] X. Fang, S. Misra, G. Xue, and D. Yang. Smart grid – the new and improved power grid: A survey. IEEE Communications Surveys and Tutorials, 14(4):944–980, 2012.
    [23] X. Feng, Y. Xu, and F. Zheng. Online scheduling for electricity cost in smart grid. In COCOA, pages 783–793. Springer, 2015.
    [24] M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai, M. Shalom, T. Tamir, and S. Zaks. Minimizing total busy time in parallel scheduling with application to optical networks. Theor. Comput. Sci., 411(40- 42):3553–3562, 2010.
    [25] M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
    [26] M. Garey, D. S. Johnson, G. Miller, and C. H. Papadimitriou. The complexity of coloring circular arcs and chords. SIAM J. Algebraic Discrete Methods, 1(2):216–227, 1980.
    [27] R. L. Graham. Bounds for certain multiprocessing anomalies. The Bell System Technical Journal, 45(9):1563–1581, 1966.
    [28] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics, 17(2):416–429, 1969.
    [29] M. M. Halld ́orsson, G. Kortsarz, and H. Shachnai. Minimizing average completion of dedicated tasks and interval graphs. In APPROX, pages 114–126, 2001.
    [30] K. Hamilton and N. Gulhar. Taking demand response to the next level. IEEE Power and Energy Mag., 8(3):60–65, 2010.
    [31] Y. Huo and J. Y. Leung. Fast approximation algorithms for job schedul- ing with processing set restrictions. Theor. Comput. Sci., 411(44- 46):3947–3955, 2010.
    [32] A. Ipakchi and F. Albuyeh. Grid of the future. IEEE Power & Energy Mag., 7(2):52–62, 2009.
    [33] K. Jansen. Approximation results for the optimum cost chromatic par- tition problem. J. Algorithms, 34(1):54–89, 2000.
    [34] L. Kannberg, D. Chassin, J. DeSteese, S. Hauser, M. Kintner-Meyer, P. N. N. L. (U.S.), and U. S. D. of Energy. GridWise: The Benefits of a Transformed Energy System. Pacific Northwest National Laboratory, 2003.
    [35] R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir. Minimizing busy time in multiple machine real-time scheduling. In FSTTCS, pages 169–180, 2010.
    [36] H. Kierstead and W. Trotter. An extremal problem in recursive com- binatorics. Congressus Numerantium, 33:143–153, 1981.
    [37] S. G. Kolliopoulos and Y. Moysoglou. The 2-valued case of makespan minimization with assignment constraints. Inf. Process. Lett., 113(1- 2):39–43, 2013.
    [38] I. Koutsopoulos and L. Tassiulas. Control and optimization meet the smart power grid: Scheduling of power demands for optimal energy management. In e-Energy, pages 41–50. ACM, 2011.
    [39] R. Krishnan. Meters of tomorrow [in my view]. IEEE Power and Energy
    Mag., 6(2):96–94, 2008.
    [40] L. G. Kroon, A. Sen, H. Deng, and A. Roy. The optimal cost chromatic partition problem for trees and interval graphs. In WG, pages 279–292, 1996.
    [41] M. Kubale, editor. Graph Colorings. American Mathematical Society, 2004.
    [42] V. Kumar and A. Rudra. Approximation algorithms for wavelength assignment. In FSTTCS, pages 152–163, 2005.
    [43] T. W. Lam, H. Ting, K. To, and P. W. H. Wong. On-line load balancing of temporary tasks revisited. Theor. Comput. Sci., 270(1-2):325–340, 2002.
    [44] K. Lee, J. Y. Leung, and M. L. Pinedo. A note on graph balancing problems with restrictions. Inf. Process. Lett., 110(1):24–29, 2009.
    [45] J. K. Lenstra, D. B. Shmoys, and E ́. Tardos. Approximation algorithms for scheduling unrelated parallel machines. Math. Program., 46:259– 271, 1990.
    [46] F. Liu, H. Liu, and P. W. H. Wong. Optimal nonpreemptive scheduling in a smart grid model. CoRR, abs/1602.06659, 2016.
    [47] F. Liu, H. Liu, and P. W. H. Wong. Optimal nonpreemptive scheduling in a smart grid model. In ISAAC, pages 53:1–53:13. LIPIcs, 2016.
    [48] Lockheed Martin. SEELoadTM Solution. http://www. lockheedmartin.co.uk/us/products/energy-solutions/ seesuite/seeload.html.
    [49] T. Logenthiran, D. Srinivasan, and T. Z. Shun. Demand side manage- ment in smart grid using heuristic optimization. IEEE Trans. Smart Grid, 3(3):1244–1252, 2012.
    [50] T. Lui, W. Stirling, and H. Marcy. Get smart. IEEE Power & Energy
    Mag., 8(3):66–78, 2010.
    [51] S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing, and T. Basar. Dependable demand response management in the smart grid: A stackelberg game approach. IEEE Trans. Smart Grid, 4(1):120–132, 2013.
    [52] G. Mertzios, M. Shalom, A. Voloshin, P. Wong, and S. Zaks. Optimizing busy time on parallel machines. Theor. Comput. Sci., 562:524–541, 2015.
    [53] A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia. Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart Grid, 1(3):320–331, 2010.
    [54] G. Muratore, U. M. Schwarz, and G. J. Woeginger. Parallel machine scheduling with nested job assignment restrictions. Oper. Res. Lett., 38(1):47–50, 2010.
    [55] S. Nicoloso, M. Sarrafzadeh, and X. Song. On the sum coloring problem on interval graphs. Algorithmica, 23(2):109–126, 1999.
    [56] S. V. Pemmaraju, R. Raman, and K. R. Varadarajan. Buffer minimiza- tion using max-coloring. In SODA, pages 562–571, 2004.
    [57] REGEN Energy Inc. ENVIROGRIDTM SMART GRID BUNDLE. http://www.regenenergy.com/press/ announcing-the-envirogrid-smart-grid-bundle/.
    [58] R. Ren and X. Tang. Clairvoyant dynamic bin packing for job schedul- ing with minimum server usage time. In SPAA, pages 227–237, 2016.
    [59] S. Salinas, M. Li, and P. Li. Multi-objective optimal energy consump- tion scheduling in smart grids. IEEE Trans. Smart Grid, 4(1):341–348, 2013.
    [60] M. Shalom, A. Voloshin, P. Wong, F. Yung, and S. Zaks. Online op- timization of busy time on parallel machines. Theor. Comput. Sci., 560:190–206, 2014.
    [61] O. Svensson. Santa claus schedules jobs on unrelated machines. SIAM J. Comput., 41(5):1318–1341, 2012.
    [62] Toronto Hydro Corporation. Peaksaver Program. http://www. peaksaver.com/peaksaver_THESL.html.
    [63] UK Department of Energy & Climate Change. Smart grid: A more energy-efficient electricity supply for the UK. https://www.gov.uk/ smart-grid-a-more-energy-efficient-electricity-supply-for-the-uk, 2013.
    [64] US Department of Energy. The Smart Grid: An Introduction. http: //www.oe.energy.gov/SmartGridIntroduction.htm, 2009.
    [65] J. Verschae and A. Wiese. On the configuration-lp for scheduling on unrelated machines. J. Scheduling, 17(4):371–383, 2014.
    [66] C. Wang and R. Sitters. On some special cases of the restricted assign- ment problem. Inf. Process. Lett., 116(11):723–728, 2016.
    [67] P. Winkler and L. Zhang. Wavelength assignment and generalized in- terval graph coloring. In SODA, pages 830–831, 2003.
    [68] F. F. Yao, A. J. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pages 374–382, 1995.
    [69] Zpryme Research & Consulting. Power systems of the future: The case for energy storage, distributed generation, and micro- grids. http://smartgrid.ieee.org/images/features/smart_grid_ survey.pdf, 2012.

    QR CODE