簡易檢索 / 詳目顯示

研究生: 朱振宏
Chen-Hing Chu
論文名稱: 矽質微型壓阻式壓力感測器封裝效應之研究
Investigation of package effect of Si-based piezo-resistive micro pressure sensor
指導教授: 江國寧
Kuo-Ning Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 137
中文關鍵詞: 微機電壓阻式有限單元法因子設計封裝效應
外文關鍵詞: piezoresistive effect, MEMS, FEM, factorial design, package effect
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於微機電系統( MEMS )製程技術之蓬勃發展,微型元件已能成功量產,矽質壓阻式壓力感測器更是微機電市場中主要的產品之ㄧ。矽質壓阻式壓力感測器的發展已逐漸成熟,而且其優異的量測精確度使得它可以更廣泛的應用於各種領域中。為了使壓力感測器可以於更嚴苛的環境下使用,經常使用矽膠保護壓力感測器薄膜以及導線,壓力必須經過矽膠才可以傳遞到薄膜表面,此ㄧ機制亦影響了壓力感測器的輸出效能。
    溫度是影響壓阻式壓力感測器效能最明顯的因子。為了提升壓力感測器效能並使得訊號量測更精確,溫度及封裝效應的影響必須加以考慮。在探討溫度及封裝效應的影響導致壓力感測器輸出電壓產生變化時,利用有限單元分析來預估壓力感測器的輸出效能。本研究將針對矽質壓力感測器兩種主要的矽膠表面型態進行探討。第一種為直接在壓力感測器上填覆矽膠,矽膠表面呈現凸起狀態;第二種情況因為壓力感測器外圍多了拘束結構,矽膠表面呈現下凹情形。利用有限單元分析探討矽膠對壓力感測器的影響,並利用實驗的方式來驗證有限單元模擬結果的合理性。
    為了達成提升壓力感測器效能的目的,使用有限單元參數化分析以及因子設計分析來探究幾何及材料參數改變的影響。設計參數包含矽晶片長度及厚度、薄膜長度、矽膠厚度及材料等。對於第一種填膠型態之壓力感測器模型,研究顯示較短及較厚的晶片幾何尺寸可以改善溫度及封裝效應的影響。對於第二種填膠型態模型,因為矽膠外圍多了拘束條件,使得矽膠成為影響溫度及封裝效應最顯著的因子,研究顯示只有適當矽膠厚度及材料參數可以改善溫度及封裝效應的影響,減少壓力感測器對溫度的敏感度。


    Since the piezoresistive effect was discovered, the applications of piezoresistive sensors have been widely employed in mechanical signal sensing. The silicon-based pressure sensor is one of the major applications of the MEMS device. Nowadays, the silicon piezoresistive pressure sensor is a mature technology in industry and its measurement accuracy is more rigorous in many advanced applications. For the purpose of operating the piezoresistive pressure sensor in harsh environment, the silicone gel is usually adopted to protect the die surface and wire bond while allowing the pressure signal to be transmitted to the silicon diaphragm. In addition, because the major factor that affects the high performance applications of the piezoresistive pressure sensor is the temperature dependence of its pressure characteristics, therefore both the thermal and packaging effects should be taken into account to obtain better sensor accuracy. To achieve this object, a finite element method (FEM) is adopted for the sensor performance evaluation. Moreover, the thermal and pressure loadings are applied on the sensor to study the sensitivity of output signals, the packaging-induced signal variation, reduction of thermal/packaging effects, and the output signal prediction for the pressure sensors. In this study, two types of FEM models are included. In model 1, the surface of the silicone gel is convex. By comparison, the surface of silicone gel is concave in model 2. Besides FEM analysis, this study use experiment to validate FEM simulation results rationality.
    Furthermore, in order to obtain a better sensor performance, the FEM parametric and factorial design analysis are performed. The design parameters include the length and thickness of silicon chip, the membrane length, the thickness and material of silicone gel, and so on. In model 1, the findings show that a reduction in the packaging-induced thermal effect can be acquired when a shorter length and thicker thickness that the silicon chip has. In model 2, a constrained condition is applied in the silicone gel peripheral. The foregoing situation makes the silicone gel become the most significant factor. The analytic result shows that a proper selection in the silicone gel’s material and thickness can greatly reduce the packaging-induced thermal effect.

    誌謝................................................ I 中文摘要............................................ II Abstract............................................III 目錄................................................ IV 表目錄................................................V 圖目錄................................................VI 第一章 緒論....................................... 1 1.1 研究背景………………………………………………… 1 1.2 研究動機………………………………………………… 2 1.3 文獻回顧………………………………………………… 3 1.4 研究目標………………………………………………… 7 第二章 基礎理論………………………………………..... 9 2.1 壓力感測器的分類……………………………………… 9 2.1.1 壓阻式(Piezo-resistive)壓力感測器…………………… 9 2.1.2 電容式(Capacitive)壓力感測器……………………….. 11 2.1.3 壓電式(Piezo-electric)壓力感測器…………………… 13 2.2 壓阻式壓力感測器原理……..…………………..……… 16 2.2.1 壓阻效應……….……………………………..……….. 16 2.2.2 X-ducer 理論…………………………………………… 18 2.2.3 惠司同電橋(Wheatstone Bridge)理論……………… 20 2.2.4 Picture Frame 理論………………….…………………. 21 2.2.5 矽基材不同晶格方向之壓阻係數………………….…. 23 2.3 統計實驗分析…………………………………………… 29 2.3.1 因子設計法………………………………………….…. 29 2.3.2 田口法……………………………………………….…. 32 2.4 封裝效應………………………………………………… 34 第三章 有限單元模型建立………………………….………...... 36 3.1 有限單元模型建立……..…….…………………………. 36 3.1.1 壓力感測器填膠模型(Model 1)………………………. 37 3.1.2 壓力感測器填膠模型(Model 2)……………..………... 38 3.2 有限單元分析…………..……………………………….. 38 3.2.1 各項材料參數之設定………………………………….. 39 3.2.2 邊界條件與負載………………..…………………….... 39 3.3 模擬方法……………………………………………….... 41 第四章 結果分析與討論………………..………………………. 43 4.1 壓力感測器填膠模型於溫度及壓力負載下之模擬結果 43 4.2 壓力感測器填膠模型之參數有限單元設計(Model 1)... 44 4.2.1 結構模型幾何尺寸之參數化分析…………………….. 44 4.2.2 矽膠材料性質之參數化分析………………………….. 47 4.3 壓力感測器填膠模型之參數有限單元設計(Model 2)... 48 4.3.1 結構模型幾何尺寸之參數化分析…………………….. 48 4.3.2 矽膠材料性質之參數化分析………………………….. 50 4.4 壓力感測器填膠模型之因子設計分析………………… 51 4.4.1 結構模型幾何因子與材料因子之選取……………….. 51 4.4.2 幾何因子與材料因子敏感度分析………………….…. 52 第五章 實驗結果與討論.……………………………………….. 59 5.1 壓力感測器實驗..……………………..………………… 59 5.2 壓阻係數實驗….……………………..…………………. 61 5.2.1 測試晶片之製作…………………………………….…. 61 5.2.2 壓阻係數之量測…………………………………….…. 63 第六章 結論…….……………………………………………….. 67 第七章 未來展望………………………………………………... 71 第八章 參考文獻………………………………………………... 72 附錄A……………………………………………………………... 133

    [1]C. S. Smith, “Piezoresistance Effect in Germanium and Silicon,”Physical Review, Vol. 94, pp. 42-49, 1954.
    [2] W. G. Pfann, R. Miller and R. N. Thurston, “Semicoducting Stress Transducers Utilizing the Transverse and Shear Piezoresistance Effects,” Journal Of Applied Physics, vol. 32, pp. 2008 October, 1961.
    [3] O. N. Tufte, P. W. Chapman and D. Long, “Silicon Diffusion-Element Piezoresistive Diaphragms,” Journal Of Applied Physics, Vol.33,no.11.pp3322-3327, 1962.
    [4] R. C. Jaeger, J. C. Suhling, A. T. Bradley and J. Xu, “Silicon Piezoresistive Stress Sensors Using MOS and Bipolar Transistors,”Advances in Electronic Packaging-ASME, EEP-Vol. 26-1, pp.219-225, 1999.
    [5] R. C. Jaeger, J. C. Suhling, M. T. Carey and R. W. Johnson, “A Piezoresistive Sensor Chip for Measurement of Stress in Electronic Packaging,” Electronic Components and Technology Conference,43rd, Orlando, FL, USA, pp. 686-692, 1993.
    [6] Y. Kanda, “Optimum Design Considerations for Silicon Piezoresistive Pressure Sensor,” Sensor and Actuators, Vol. A62, No. 1-3, pp.539-542, 1997.
    [7] E. Lund and T. Finstad, “ Measurement of the Temperature Dependency of the Piezoresistance Coefficient in P-Type Silicon,”Advances in Electric Packaging-ASME, EEP-Vol. 26-1, pp.215-218,1999.
    [8] P. J. French and A. G. Evans, “Piezoresistance in Polysilicon and Its Applications to Strain Gauges,” Solid-State Electrics, Vol. 32, No.1,pp.1-10, 1989.
    [9] T. Pancewicz, R. Jachowicz, Z. Gniazdowski, Z. Azgin and P.Kowalski, “ The Empirical Verification of the FEM Model of Semiconductor Pressure Sensor,” Sensors and Actuators, Vol. A76, No.1-3, pp.260-265, 1999.
    [10] F. Schilling, W. Langheinrich, K. Weiblen and D. Arand, “Simulation of Thermally Induces Package Effects with Regard to Piezoresistive Pressure Sensors,” Sensors and Actuators, Vol. A60, No. 1-3,pp.37-39, 1997.
    [11] E. Abbaspour and S. Afrang, “A Novel Method for Packaging of Micromachined Piezoresistive Pressure Sensor,” Published at IEEE Conference, Penang , Malaysia, 2002.
    [12] C. T. Peng and K. N. Chiang, “Analysis and Validation of Thermal and Packaging Effects of a Piezoresistive Pressure Sensor”, Journal of the Chinese Institute of Engineers, Vol. 27, No. 7, pp. 955-964, 2004.
    [13] C. T. Peng, J. C. Lin, C. T. Lin and K. N. Chiang, "Performance and Package Effect of a Novel
    Piezoresistive Pressure Sensor Fabricated by Front-Side Etching Technology", Sensors and Actuators Journal
    A ,Vol. 119, pp. 28-37, 2005.
    [14] C. C. Lee, C. T. Peng and K. N. Chiang, “Packaging Effect Investigation of CMOS Compatible Pressure Sensor Using Flip Chip and Flex Circuit Board Technologies,” Accepted and to be published at Sensors and Actuators Journal A, 2006.
    [15] Y. S. Lee and K. D. Wise, “A batch-fabricated silicon capacitive pressure sensor transducer with low temperature sensitivity, ” IEEE Trans, Electron Devices ED 29, pp.42-49, 1982.
    [16] J. M. Lin and Y. F. Lin, ”IEEE 1451 Standard Wireless Smart Sensor Module Design,” 2005 International Conference on Advanced Manufacture, Nov 28-Dec 2, Taipei, Taiwan, 2005.
    [17] R. Krondorfer, Y. K. Kim, J. Kim, C. G. Gusstafson and T. C.Lommasson, “Finite element simulation of package stress in transfer molded MEMS pressure sensors,” Microelectronics Reliability, Vol.44, pp. 1995-2002, 2004.
    [18] J. H. Robert, “ Capacitive Sensors,” Sponsorship of the IEEE Industrial Electronics Society, 1997.
    [19] M. Elwenspoek and R. Wiegerink,“MechanicalMicrosensors,”Springer-Verlag Berlin Heidelberg, 2001.
    [20] B. Stephen, E. Graham, K. Michael and W. Neil, “MEMS Mechanical Sensors,” Artech House, Inc., 2004.
    [21] S.M. Sze, “Semiconductor Sensors,” John Wiley& Sons, Inc.,1994
    [22] T. R. Hsu, “MEMS Packaging,” Published by INSPEC, 2004.
    [23] X. Wang, Z. Wu and S. Liu, “Modeling and Simulation of
    Thermal-mechanical Characteristics of the Packaging of Tire Pressure Monitoring System,” International Conference on Electronic Packaging Technology, Shenzhen, 2005.
    [24] W. H. Ko and Q. Wang, “Touch mode capacitive pressure sensors,”Sensor and Actuators, Vol. 75, pp. 242-251, 1999.
    [25] G. Blasquez, C. Douziech and P. Pons, “Analysis characterization and optimization of temperature coefficient parameters in capacitive pressure sensors,” Sensor and Actuators, Vol. A93, pp. 44-47, 2001.
    [26] H. Eldin and A. Elgamel, “A simple and efficient technique for the simulation of capacitive pressure transducers,” Sensor and Actuators,Vol. 77, pp. 183-186, 1999.
    [27] J. A. Chiou, “Simulations for Thermal Warpage and Pressure Nonlinearity of Monolithic CMOS Pressure Sensors,” IEEE Transactions on Advanced Packaging, Vol. 26, No. 3, 2003.
    [28] G. Bitko and A. McNeil, “Improving the MEMS Pressure Sensor,”Sensors online, Vol. 17, No. 7, 2000.
    [29] F. Shoraka, C. Gealer and E. Bettez, “Finite Element Analysis of Compliant Coating,” Electronics Components Conference, 1988.
    [30] C. P. Wong and J. M. Segelken, “Understanding the Use of Silicone Gels for Nonhermetic Plastic Packaging,” Transactions on Components, Hybrids, And Manufacturing Technology, Vol. 12, NO. 4,1989
    [31] 蘇朝墩,“產品穩健設計",中華民國品質學會,第二版,頁9-36,2000。
    [32] D. C. Montgomery,“Design and Analysis of Experiments,"John Wiley & Sons, 5th Edition, pp. 213-270, 2001
    [33] J. P. Holman, “Experimental Methods for Engineers,"Seventh Edition, McGraw-Hill, New York, pp. 48-143, 2001.
    [34] H. Allen, K. Ramzan and J. Knutti, “Anodic Bond Quality and impact on Pressure Sensor Long-Term Stability," Presented at MRS Conference, San Francisco, Paper#I5.15, 2001.
    [35] R. E. Beaty, R. C. Jaeger, J. C. Suhling, R. W. Johnson, and R. D.Butler, “Evaluation of Piezoresistive Coefficient Variation in Silicon Stress Sensors Using a Four Point Bending Test Fixture,"IEEE Transactions on Components, Hybrids, And Manufacturing Technology, Vol. 15, NO. 5, pp. 904-914, 1992
    [36] 劉克琪,“實驗設計與田口式品質工程",華泰書局,第一版,1994。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE