簡易檢索 / 詳目顯示

研究生: 魏琪娟
Wei, Ci-Juan
論文名稱: Acb Complex 碳青黴烯抗藥性臨床分離株之基因序列分析
Genome Sequence Analysis for Carbapenem-Resistant Clinical Isolates of Acb Complex
指導教授: 蔡世峯
Tsai, Shih-Feng
呂平江
Lyu, Ping-Chiang
口試委員: 陳盈璁
Chen, Ying-Tsong
黃姿雯
Huang, Tzu-Wen
郭書辰
Kuo, Shu-Chen
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 71
中文關鍵詞: 次世代定序多位點序列分型抗藥性葡萄糖去氫化酶感染
外文關鍵詞: Next Generation Sequencing, Multilocus Sequence Typing, Drug Resistance, Glucose Dehydrogenase B, Infection
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Acb complex為臨床上常見且具有多重抗藥性的伺機感染細菌,在臨床上難以被區分出正確的菌種。藉由次世代定序技術(NGS),除了能準確的區分出臨床分離株的菌種,還能鑑定分離株中的多位點序列分型及其所攜帶的抗藥基因。為達到即時監控的目的,本研究將10株2016年來自台北榮民總醫院的臨床分離株進行分析,比較2台Illumina桌上型定序儀: iSeq100及MiSeq的效能。比較其原始產出數據和後續組裝統計的分析結果,iSeq100在各方面都比MiSeq來的穩定且可取得較完整基因體。在此,我們建立一個應用iSeq100定序儀監控臨床分離株的工作流程。
    運用上述工作流程,分析自2019年7月至12月在臺北醫學大學附設醫院所分離的45抗碳青黴烯臨床鮑曼不動桿菌株。在多位點序列分型分析中,大多數分離株(17株)同時為ST208及ST1806序列型。而這些分離株中最常攜帶的β-內醯胺酶(β-lactamase)基因為blaADC-25、blaOXA-23和blaOXA-66,推測blaADC-25、blaOXA-23及blaOXA-66可能為當時Acb complex造成碳青黴烯抗藥性的主要因素之一。
    將北醫附醫的臨床分離株分析結果與2015至2017年自台北榮總的493株分離株之基因體分析後資料進行比較。結果發現,在這兩批菌株中,最常出現的序列型為在一菌株中同時為ST208及ST1806。在這些臨床分離株中最常攜帶的β-內醯胺酶基因為blaADC-25、blaOXA-23和blaOXA-66。而在兩批菌株中,有超過半數的臨床分離株皆攜帶blaTEM-1D。推測此為當時造成菌株產生抗性的原因之一。此外,有超過半數的菌株同時帶有gdhB及其變異型,使同一菌株內同時出現兩種不同的序列型別。兩家醫院的時間及樣本數雖然有差異,但在β-內醯胺酶基因抗藥基因及多位點序列分型分析結果都具有相似的結果。且以iSeq100建立的新工作流程可以更好,更快速地分析其分離物中的抗藥基因和多位點序列分型。


    The Acb complex is a clinically substantial opportunistic bacterium and notorious for its multidrug resistance. It is difficult to identity the correct species among the Acb complex in clinical specimens. Next-generation sequencing (NGS) technology can accurately determine bacterial species, multilocus sequence types (MLST), and antimicrobial resistance genes of clinical isolates. To achieve the goal of real-time monitoring, we chose 10 clinical isolates from the Taipei Veteran General Hospital (TVGH) in 2016 for comparing the performance of two benchtop sequencers, Illumina iSeq100, and MiSeq Systems. According to output data and assembly statistics, the iSeq100 system was more stable and suitable to obtain bacterial genomes than the Miseq system. Here, we established a new workflow for the application of clinical isolates by using the iSeq100 system. Forty-five clinical isolates of carbapenem-resistant A. baumannii for clinical monitoring were collected at Taipei Medical University Hospital (TMUH) from July 2019 to December 2019. The results showed that the 17 clinical isolates belonged to ST208 and ST1806 simultaneously and 66.5% of clinical isolates belonged to CC92. Analysis of β-lactamase genes showed that blaADC-25, blaOXA-23, and blaOXA-66 genes were detected in almost all isolates. We considered that it was one of the mechanisms rendering carbapenem resistance to the Acb complex. Comparing TMUH isolates with the other 493 isolates of TVGH collected from 2015 to 2017, the results in MLST and analysis of β-lactamase genes were similar. Besides, we found that the isolates had both gdhB (gdhB-3, gdhB-38, and gdhB-40) and its variations (gdhB-189, gdhB-182, and gdhB-212) leading to two sequences types in one isolate. Thus, the new workflow by iSeq100 system could effectively analyze resistance genes and MLST.

    Abstract ...................................................... i 中文摘要 ....................................................... ii 誌謝 .......................................................... iii Contents ...................................................... iv List of Figures ................................................vi List of Tables ................................................ vii Abbreviation .................................................. viii CHAPTER 1 Introduction 1.1 Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) Complex ....................................................... 1 1.2 β-Lactam antibiotics ...................................... 1 1.2.1 β-lactamase ............................................. 2 1.2.1.1 Class A ............................................... 2 1.2.1.2 Class B ............................................... 3 1.2.1.3 Class C ............................................... 3 1.2.1.4 Class D ............................................... 4 1.3 Carbapenems ............................................... 4 1.4 Next Generation Sequencing (NGS) .......................... 4 1.5 Comparison of Two Illumina NGS Systems, MiSeq and iSeq100 . 5 1.5.1 Performance and Capacity of MiSeq and iSeq100 ........... 6 1.5.2 The Different Library Prepare Kit for Two Systems ....... 6 CHAPTER 2 Materials and Methods ............................... 8 2.1 Bacterial Isolates ........................................ 8 2.2 Genomic DNA Extraction .................................... 8 2.3 Library Preparation ....................................... 8 2.4 De Novo Assembly .......................................... 9 2.5 Genome Analysis ........................................... 9 2.5.1 Multilocus Sequence Typing (MLST) ....................... 9 2.5.2 Phylogenetic Tree ....................................... 9 2.3.3 Analysis of Antimicrobial Resistance Genes .............. 10 3.2 FastQC Difference in MiSeq, iSeq100 and Trimmed MiSeq Data 12 3.7 Sequencing Quality for Each Batch of WGS .................. 16 3.8 The Sufficient Data for Isolates after De Novo Assembly ... 17 3.9 The Trends of Resistance Genes in TMUH .................... 18 3.10 The Trends of MLST From July 2019 to December 2019 in TMUH 18 3.11 The Trends of Resistance Genes Between TMUH and TVGH ..... 19 3.12 The Trends of MLST Between TMUH and TVGH ................. 19 3.13 Double Sequence Types in One Isolate at gdhB ............. 20 CHAPTER 4 Discussion and Conclusions .......................... 22 Figures ....................................................... 24 Tables ........................................................ 53 Supplementary Data ............................................ 60 Reference ..................................................... 65

    Alshahni, M.M., Asahara, M., Kawakami, S., Fujisaki, R., Matsunaga, N., Furukawa, T., Teramoto, T., andMakimura, K. (2015). Genotyping of Acinetobacter baumannii strains isolated at a Japanese hospital over five years using targeted next-generation sequencing. J. Infect. Chemother.
    Antunes, L.C.S., Visca, P., andTowner, K.J. (2014a). Acinetobacter baumannii: Evolution of a global pathogen. Pathog. Dis. 71, 292–301.
    Antunes, N.T., Lamoureaux, T.L., Toth, M., Stewart, N.K., Frase, H., andVakulenko, S.B. (2014b). Class D β-lactamases: Are they all carbapenemases? Antimicrob. Agents Chemother. 58, 2119–2125.
    Bartual, S.G., Seifert, H., Hippler, C., Luzon, M.A.D., Wisplinghoff, H., andRodríguez-Valera, F. (2005). Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J. Clin. Microbiol. 43, 4382–4390.
    Behjati, S., andTarpey, P.S. (2013). What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed. 98, 236–238.
    Castillo-Ramírez, S., andGraña-Miraglia, L. (2019). Inaccurate multilocus sequence typing of Acinetobacter baumannii. Emerg. Infect. Dis. 25, 186–187.
    Chen, L., Yuan, J., Xu, Y., Zhang, F., andChen, Z. (2018). Comparison of clinical manifestations and antibiotic resistances among three genospecies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. PLoS One 13, 1–11.
    Colman, R.E., Mace, A., Seifert, M., Hetzel, J., Mshaiel, H., Suresh, A., Lemmer, D., Engelthaler, D.M., Catanzaro, D.G., Young, A.G., et al. (2019). Whole-genome and targeted sequencing of drug-resistant Mycobacterium tuberculosis on the iSeq100 and MiSeq: A performance, ease-of-use, and cost evaluation. PLoS Med. 16, 1–13.
    Elshamy, A.A., andAboshanab, K.M. (2020). A review on bacterial resistance to carbapenems: Epidemiology, detection and treatment options. Futur. Sci. OA 6.
    Ewers, C., Klotz, P., Leidner, U., Stamm, I., Prenger-Berninghoff, E., Göttig, S., Semmler, T., andScheufen, S. (2017). OXA-23 and ISAba1–OXA-66 class D β-lactamases in Acinetobacter baumannii isolates from companion animals. Int. J. Antimicrob. Agents 49, 37–44.
    Ferri, S., Kojima, K., andSode, K. (2011). Review of glucose oxidases and glucose dehydrogenases: A bird’s eye view of glucose sensing enzymes. J. Diabetes Sci. Technol. 5, 1068–1076.
    Gaiarsa, S., Batisti Biffignandi, G., Esposito, E.P., Castelli, M., Jolley, K.A., Brisse, S., Sassera, D., andZarrilli, R. (2019). Comparative analysis of the two Acinetobacter baumannii multilocus sequence typing (MLST) schemes. Front. Microbiol. 10.
    Gales, A.C., Seifert, H., Gur, D., Castanheira, M., Jones, R.N., andSader, H.S. (2019). Antimicrobial Susceptibility of acinetobacter calcoaceticus-acinetobacter baumannii complex and stenotrophomonas maltophilia clinical isolates: Results from the SENTRY Antimicrobial Surveillance Program (1997-2016). Open Forum Infect. Dis. 6, S34–S46.
    Haynes, B.C., Blidner, R.A., Cardwell, R.D., Zeigler, R., Gokul, S., Thibert, J.R., Chen, L., Fujimoto, J., Papadimitrakopoulou, V.A., Wistuba, I.I., et al. (2019). An Integrated Next-Generation Sequencing System for Analyzing DNA Mutations, Gene Fusions, and RNA Expression in Lung Cancer. Transl. Oncol. 12, 836–845.
    Illumina (2011). Quality Scores for Next-Generation Sequencing: Assessing sequencing accuracy using Phred queality scoring. Qual. Scores next-Generations Seq. 1–2.
    Illumina (2013). Technology Spotlight: Illumina Two-Channel SBS Sequencing Technology.
    Illumina (2017). iSeqTM 100 System System. 1–4.
    Illumina (2018). Illumina CMOS Chip and One-Channel SBS Chemistry. 1–4.
    Jacoby, G.A. (2009). AmpC Β-Lactamases. Clin. Microbiol. Rev. 22, 161–182.
    Jaidane, N., Naas, T., Mansour, W., Radhia, B.Ben, Jerbi, S., Boujaafar, N., Bouallegue, O., andBonnin, R.A. (2018). Genomic analysis of in vivo acquired resistance to colistin and rifampicin in Acinetobacter baumannii. Int. J. Antimicrob. Agents 51, 266–269.
    Jeon, J.H., Hong, M.K., Lee, J.H., Lee, J.J., Park, K.S., Karim, A.M., Jo, J.Y., Kim, J.H., Ko, K.S., Kang, L.W., et al. (2014). Structure of ADC-68, a novel carbapenem-hydrolyzing class C extended-spectrum β-lactamase isolated from Acinetobacter baumannii. Acta Crystallogr. Sect. D Biol. Crystallogr. 70, 2924–2936.
    Jia, H., Sun, Q., Ruan, Z., andXie, X. (2019). Characterization of a small plasmid carrying the carbapenem resistance gene blaoxa-72 from community-acquired acinetobacter baumannii sequence type 880 in China. Infect. Drug Resist. 12, 1545–1553.
    Kanamori, H., Parobek, C.M., Weber, D.J., Duin, D.Van, Rutala, W.A., Cairns, B.A., andJuliano, J.J. (2016). Next-generation sequencing and comparative analysis of sequential outbreaks caused by multidrug-resistant Acinetobacter baumannii at a large academic burn center. Antimicrob. Agents Chemother. 60, 1249–1257.
    Klein, E.Y., VanBoeckel, T.P., Martinez, E.M., Pant, S., Gandra, S., Levin, S.A., Goossens, H., andLaxminarayan, R. (2018). Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. U. S. A. 115, E3463–E3470.
    Kleinheinz, K.A., Joensen, K.G., andLarsen, M.V. (2014). Applying the ResFinder and VirulenceFinder. Bacteriophage 4, 1–7.
    Lee, C.R., Lee, J.H., Park, M., Park, K.S., Bae, I.K., Kim, Y.B., Cha, C.J., Jeong, B.C., andLee, S.H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front. Cell. Infect. Microbiol. 7.
    Leggett, R.M., Ramirez-Gonzalez, R.H., Clavijo, B.J., Waite, D., andDavey, R.P. (2013). Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front. Genet. 4, 1–5.
    Lin, M.-F. (2014). Antimicrobial resistance in Acinetobacter baumannii : From bench to bedside . World J. Clin. Cases 2, 787.
    Lo, Y.T., andShaw, P.C. (2019). Application of next-generation sequencing for the identification of herbal products. Biotechnol. Adv. 37, 107450.
    Lv, W., Zhang, X., Hou, M., Han, D., Li, Y., andXiong, W. (2019). Draft genome sequence of an OXA-23, OXA-66, ADC-25 and TEM-1D co-producing Acinetobacter baumannii ST195 isolated from a patient with neonatal pneumonia in China. J. Glob. Antimicrob. Resist. 16, 1–3.
    Misic, D., Asanin, J., Spergser, J., andSzostak, M. (2018). crossm OXA-72-Mediated Carbapenem Resistance in Sequence Type 1. 1–4.
    Nowak, P., andPaluchowska, P. (2016). Acinetobacter baumannii: Biology and drug resistance — role of carbapenemases. Folia Histochem. Cytobiol. 54, 61–74.
    Palzkill, T. (2013). Metallo-β-lactamase structure and function. Ann. N. Y. Acad. Sci. 1277, 91–104.
    Papp-Wallace, K.M., Endimiani, A., Taracila, M.A., andBonomo, R.A. (2011). Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 55, 4943–4960.
    Pavlopoulos, G.A., Soldatos, T.G., Barbosa-Silva, A., andSchneider, R. (2010). A reference guide for tree analysis and visualization. BioData Min. 3, 1–16.
    Poirel, L., andNordmann, P. (2006). Carbapenem resistance in Acinetobacter baumannii: Mechanisms and epidemiology. Clin. Microbiol. Infect. 12, 826–836.
    Pujolt, C.J., andKado, C.I. (1992). Required for Pink Disease of Pineapple. Microbiology 145, 1217–1226.
    Qin, D. (2019). Next-generation sequencing and its clinical application. Cancer Biol. Med. 16, 4–10.
    Raven, K.E., Blane, B., Leek, D., Churcher, C., Kokko-Gonzales, P., Pugazhendhi, D., Fraser, L., Betley, J., Parkhill, J., andPeacocka, S.J. (2019). Methodology for whole-genome sequencing of methicillin-resistant staphylococcus aureus isolates in a routine hospital microbiology laboratory. J. Clin. Microbiol. 57, 1–10.
    Rolinson, G.N., andOtevens, S. (1961). Microbiological Studies on a New Broad-Spectrum Penicillin, “Penbritin.” Br. Med. J. 2, 191–196.
    Slatko, B.E., Gardner, A.F., andAusubel, F.M. (2018). Overview of Next Generation Sequencing technologies (and bioinformatics) in cancer. Mol. Biol. 122, 1–15.
    Tian, G.B., Adams-Haduch, J.M., Taracila, M., Bonomo, R.A., Wang, H.N., andDoi, Y. (2011). Extended-spectrum AmpC cephalosporinase in Acinetobacter baumannii: ADC-56 confers resistance to cefepime. Antimicrob. Agents Chemother. 55, 4922–4925.
    Toh, B.E.W., Paterson, D.L., Kamolvit, W., Zowawi, H., Kvaskoff, D., Sidjabat, H., Wailan, A., Peleg, A.Y., andHuber, C.A. (2015). Species identification within Acinetobacter calcoaceticus-baumannii complex using MALDI-TOF MS. J. Microbiol. Methods 118, 128–132.
    Tooke, C.L., Hinchliffe, P., Bragginton, E.C., Colenso, C.K., Hirvonen, V.H.A., Takebayashi, Y., andSpencer, J. (2019). β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 431, 3472–3500.
    Vashist, J., Tiwari, V., Das, R., Kapil, A., andRajeswari, M.R. (2011). Analysis of penicillin-binding proteins (PBPs) in carbapenem resistant Acinetobacter baumannii. Indian J. Med. Res.
    Ward, C.M., To, T.-H., andPederson, S.M. (2020). ngsReports: a Bioconductor package for managing FastQC reports and other NGS related log files. Bioinformatics 36, 2587–2588.
    Wibberg, D., Salto, I.P., Eikmeyer, F.G., Maus, I., Winkler, A., Nordmann, P., andPoirel, L. (2018). crossm. 62, 1–12.
    Wisplinghoff, H., Paulus, T., Lugenheim, M., Stefanik, D., Higgins, P.G., Edmond, M.B., Wenzel, R.P., andSeifert, H. (2012). Nosocomial bloodstream infections due to Acinetobacter baumannii, Acinetobacter pittii and Acinetobacter nosocomialis in the United States. J. Infect. 64, 282–290.
    Zhang, Q. (2018). Metagenome Assembly and Contig Assignment. Methods Mol. Biol. 1849, 179–192.
    Zheng, J.Y., Huang, S.S., Huang, S.H., andYe, J.J. (2019). Colistin for pneumonia involving multidrug-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J. Microbiol. Immunol. Infect.
    Zhou, Z., Li, L., Yu, Y., andMa, Y. (2003). The status of drug resistance and ampC gene expression in Enterobacter cloacae. Chin. Med. J. (Engl).

    QR CODE