在需要高序化溫度的交換偏移場系統中,序化的Ir(x)Mn(100-x)薄膜不曾被發現過。然而,我們卻發現了Ir(x)Mn(100-x)合金薄膜的序化結構 (X=19, 24, 26, 33)可以在較低的退火溫度(300度C)產生。除此之外,Ir(x)Mn(100-x)的序化程度與交換偏移場之間有密切的關連,所以徹底瞭解Ir(x)Mn(100-x)的序化程度是非常重要的。
在本實驗當中,我們使用X-ray diffraction,X-ray Reflectivity,X-ray fluorescence,Magneto-Optical Kerr Effect,以及X-ray absorption spectroscopy來分析樣品,從樣品的成分比例、序化參數、界面粗糙度、反鐵磁層厚度、配位數、以及原子價數的探測,進一步瞭解序化程度與交換偏移場之間的關連。所有實驗都在National Synchrotron Radiation Research Center (NSRRC)完成。
經由序化參數量測,確定IrMn序化合金為L12序化結構。推測
IrMn合金形成序化結構是源自於MBE的成長方式。另外也由於IrMn的合金薄膜相對塊材薄,因此造成序化溫度下降,而易使IrMn合金薄膜產生序化相。我們發現序化程度越高,交換偏移場也越大。在本系統中,”反鐵磁層厚度”及”鐵磁反鐵磁間界面間粗糙度”並非影響交換偏移場的重要因素,而晶體結構才是關鍵。
參考文獻
1.H.N. Fuke, K. Saito, Y. Kamiguchi, H. Iwasaki, M. Sahashi, J. Appl. Phys. 81, 4004 (1997).
2.Devasahayam, A.J.; Kryder, M.H., IEEE Trans. Magn. 35, 649 (1999).
3.Nozieres JP, Jaren S, Zhang YB, et al. J. Appl. Phys. 87, 3920 (2000).
4.K.Sasao et al., J. Alloys. comp., 352(1-2), 21 (2003)
5.H. Li,and P. P. Freitas, J. Appl .Phys., 89, P6904 (2001)
6.J.vanDriel ,F.R.deBore,M.H.Lenssen,and R.Coehoorn,106J.Appl.Phys.
88, 975(2000)
7.R.Nakatani, H.Hoshiya, K.Hoshino and Y.Sugita, IEEE Trans.Magn, VOL 33. NO 5(1997)
8.M.Pakala, Y.Huai, G.Anderson, and L.Miloslavsky, J.Appl.Phys.87.
6653(2000)
9.J. C. Ro, Y .S. Choi, S. J. Suh, and H. J. Lee, IEEE Trans Magn,35,3925(1999)
10.A. J. Devasahayam, P. J. Sides, and M. H. Kryder, J.Appl.Phys. 83, 7216(1998)
11.T. Yamaoka, J.Phys.Soc.Jpn. 36, 445 (1974)
12.T. Yamaoka, M. Mekata, and H. Takaki, J.Phys.Soc.Jpn. 31, 301 (1971)
13.K. Sasao , R.Yamauchi and K. Gukamichi , IEEE Trans.Magn.35 ,3910 (1999)
14.K. Fukamichi, K. Sasao, and R. Y. Umetsu, Phys. Rev. B 67, 024420 (2003)
15.A. sakuma, K. Fukamichi, K. Sasao, andR. Y.Umetsu, Phys. Rev. Lett., 67, 024420 (2003)
16.I. Tomeno, H. N. Fuke, H. Iwasaki, M. Sahashi and Y. Tsunoda, J.Appl.Phys. 86, 3853 (1999)
17.Kojiro Yagami, Masakiyo Tsunoda, J.Appl.Phys. 89 (11), 6609 (2001)
18.林麗娟, “晶格序化”,科儀新知, 第十三卷第六期, 13 (1992)
19.E.C.Bain, Trans.AIME, 68, 625 (1923)
20.B.E.Warren, X-ray Diffraction; Ch. 12. Addison-Wesley, reading,May (1969)
21.N.Setter and L.E.Cross, “The Contribution of Structural Disorder to Diffuse Phase Transition in Ferroelectrics,”J.Mat.Sci.,15, 2478(1980)
22.M.N. Baibich, J.M Broto, A.Fert et al., Phys.Rev.Lett. 61, 2472 (1988)
23.Eric E. Fullerton et al., Phys. Rev. B. 48, 15755 (1993)
24.See e.g. “Ultrathin Madnetic Structure Ⅱ, Measurement Techniquesand Novel Magnetic Properties” ed. By B.Heinrich, J. A. C. Bland.(1994)
25.A. Fert ,P. Grunberg, A. Bartthelemy, F. Pertroff, W. Zinn.J.Magn. Magn.Mater, 140(1995)
26.J.C.S. Kools. IEEE Tran. Magn. 32, 3165 (996)
27.Soshin Chikazumi 著,張煦、李學養 譯 磁性物理學,52,經連出版社(1981)
28.Cullity,”Introduction to magnetic materials”.S□shin Chikazumi and Stanley H.Charap,”Physics of Magnetism”.
29.黃彥衡, X光吸收光譜術研究磁異向性奈米材料(FePt, CrPt3)之結構, 國立清華大學工程與系統科學系碩士論文(2004).
30.D. C. Koningsberger and R. Prins., X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES, pp.53-83 (1988).
31.B. K. Teo, EXAFS: Basic Principles and Data Analysis, pp. 21-101 (1986).
32.王其武、劉文漢, X射線吸收精細結構及其應用,科學出版社(1994).
33.中華民國磁性技協會會訊29期, P2
34.W. H. Meiklejohnand C.P., bean, Phys. Rev., 105, 904 (1957)
35.A. P. Malozemoff, Phys. Rev. B., 35, 3679 (1987)
36.中華民國磁性技協會會訊29期, P2
37.B. D. Cullity, “Introduction to Magnetic Materials,Addison-Wesley”
, 133 (1972)
38.B. D. Cullity, “Introduction to Magnetic Materials,Addison-Wesley”
, 138 (1972)
39.M. Maret and M. Albrecht, JMMM, 218 151 (2000)
40.J.P. Qian and G.C. Wang , J. Van Sci. Technol. A8, 4117(1990)
41.Voigt. W,“Magneto and Electro Optic”, Teubner, Leiptig (1908)
42.Hulme, H.R. “Farady effect in ferromagnetics”, Pro. Roy. Soc, A135,237(1932).
43.葉幸真,國立清華大學工程與系統科學所碩士論文 (2003)
44.Tolgyessy, Juraj./Havranek, E./Dejmkova, E. Radionuclide x-ray fluorescence analysis with environmental applications
45.李明鴻,國立清華大學工程與系統科學所碩士論文 (2003)
46.R. Yamauchia), J. Appl. Phys, Vol.85, No.8, 4741, (1999)
47.Elements of x-ray diffraction, Cullity, Bernard Dennis, (1978)
48.Kebin Li, J. Appl. Phys., Vol. 94, No. 9, 1 November (2003)