研究生: |
劉子正 Liu, Zi-Jheng |
---|---|
論文名稱: |
金屬氧化物電阻轉換元件在交叉點記憶體上的應用 Metal-Oxide Resistive Switching Devices for Cross-Point Memory Applications |
指導教授: |
林樹均
Lin, Su-Jien 甘炯耀 Gan, Jon-Yiew |
口試委員: |
吳振名
Wu, Jenn-Ming 曾俊元 Tseng, Tseung-Yuen 謝光宇 Hsieh, Kuang-Yeu |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 氧化鋅 、氧化鉭 、非揮發記憶體 、選擇元件 、電阻式記憶體 、交叉點記憶體 、一二極體一電阻器 、一選擇器一電阻器 、互補式電阻開關 |
外文關鍵詞: | Zinc oxide, Tantalum oxide, Nonvolatile memory, Selector devices, Resistive random access memory (RRAM), Cross-point memory, One diode-one resistor (1D1R), One selector-one resistor (1S1R), Complementary resistive switch (CRS) |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統快閃記憶體正面臨微縮至20奈米以下的技術瓶頸,而且其耐久性不佳(反覆開關10^6次)和寫入速度慢(寫入時間大約1微秒)等問題仍未有效解決。電阻式記憶體具有優秀的微縮能力、簡單結構、開關速度快(小於10奈秒)、高耐用性(反覆開關可超過10^10次)和保持力(記憶維持超過10年),且與互補式金氧半電晶體的前段與後段製程技術皆有良好的相容性,因此已被視為未來可取代快閃記憶體的潛力記憶體技術。除此之外,電阻式記憶體可整合在交叉點元件陣列中,並且藉著三維立體的堆疊結構大幅提升其記憶密度,進而達到高密度記憶體的目標,但其中主要的挑戰就是元件特性的變異性和元件結構的設計。因此,此論文提出織構化材料技術來改善氧化鋅電阻式記憶體的穩定性,並且提出氧化鋅和氧化鉭材料系統的元件結構來降低潛行漏電流,另外,也針對不同的元件非線性特性和讀取模式來分析交叉點記憶體陣列的尺寸極限和能耗。
Conventional FLASH memory is facing technological bottlenecks to scale down to sub-20 nm nodes, and its unsatisfactory endurance (~10^6 cycles) and long programming time (~1 us) have not been effectively improved. Resistive random access memory (RRAM) is a promising candidate to replace FLASH memory due to its excellent scalability (<10 nm), simple structure, fast switching speed (<10 ns), robust endurance (>10^10 cycles), long retention (>10 years), and good compatibility with CMOS front- and/or back-end-of-line processing. In addition, RRAM devices can be integrated in cross-point arrays, and their memory density can be further increased by three-dimensional stacking. For high-density cross-point memory applications, the challenges of RRAMs will be their variability and cell structure design. Thus, a textured material technology is proposed to reduce switching variability of ZnO-based RRAMs. In addition, ZnO- and Ta2O5-based cell structures are proposed for reducing sneak-path leakage. Furthermore, array size limitations and power consumption are investigated regarding different current-voltage (I-V) nonlinearity and read schemes.
Chapter 1
[1] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges,” Advanced Materials, vol. 21, pp. 2632-2663, 2009.
[2] http://www.crescentmeadow.com/document_imaging/pdf/22045p.pdf “Cost of Semiconductor RAM over 50 years: 1970 to 2020”
[3] J. Joshua Yang, Dmitri B. Strukov, and Duncan R. Stewart, “Memristive devices for computing,” Nature Nanotechnology, vol. 8, pp. 13-24, 2012.
[4] D. Kahng and S.M. Sze, “A floating-gate and its application to memory devices,” The Bell System Technical Journal, vol. 46, pp. 1288-1295, 1967.
[5] http://en.wikipedia.org/wiki/Flash_memory “Flash memory”
[6] P. Pavan, R. Bez, P. Olivo, and E. Zanoni “Flash Memory Cells—An Overview,” Proceedings of the IEEE, vol. 85, pp. 1248-1271, 1997.
[7] Chua, L. O. “Memristor—the missing circuit element,” IEEE Transactions on Circuit Theory, vol. 18, pp. 507-519, 1971.
[8] J. F. Gibbons and W. E. Beadle, “Switching properties of thin NiO films,” Solid-State Electronics, vol. 7, pp. 785-790, 1964.
[9] G. Dearnale, A. M. Stoneham, and D. V. Morgan, “Electrical phenomena in amorphous oxide films,” Reports on Progress in Physics, vol. 33, 1129, 1970.
[10] J. G. Simmons, “Conduction in thin dielectric films,” Journal of Physics D: Applied Physics, vol. 4, 613, 1971.
[11] Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, and S. J. Wind, “Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals,” Applied Physics Letters, vol. 78, pp. 3738-3740, 2001.
[12] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Applied Physics Letters, vol. 77, pp. 139-141, 2000.
[13] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Applied Physics Letters, vol. 85, pp. 5655-5657, 2004.
[14] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films,” Applied Physics Letters, vol. 86, 262907, 2005.
[15] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U.-In. Chung, and J. T. Moon, “Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses,” IEEE Technical Digest International Electron Devices Meeting, 2004, pp. 587-590.
[16] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature, vol. 453, pp. 80-83, 2008.
[17] G. S. Snider and R. S. Williams, “Nano/CMOS architectures using a field-programmable nanowire interconnect,” Nanotechnology, vol. 18, 035204, 2007.
[18] D. B. Strukov and K. K. Likharev, “CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices,” Nanotechnology, vol. 16, 888, 2005.
[19] S. Kaeriyama, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, and M. Aono, “A nonvolatile programmable solid-electrolyte nanometer switch,” IEEE Journal of Solid-State Circuits, vol. 40, 168-176, 2005.
[20] Y. Y. Liauw, Z. Zhang, W. Kim, A. E. Gamal, S. S. Wong, “Nonvolatile 3D-FPGA with monolithically stacked RRAM-based configuration memory,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 406-408, 2012.
[21] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J. Yang, W. Wu, X Li, W. M. Tong, D. B. Strukov, G. S. Snider, G. Medeiros-Ribeiro, and R. S. Williams, “Memristor-CMOS hybrid integrated circuits for reconfigurable logic,” Nano Letters, vol. 9, pp. 3640-3645. 2009.
[22] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart and R. S. Williams, “Memristive switches enable stateful logic operations via material implication,” Nature, vol. 464, pp. 873-876, 2010.
[23] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Letters, vol. 10, pp. 1297-1301, 2010.
[24] D. Kuzum, R. G. D. Jeyasingh, B. Lee, and H. S. P. Wong, “Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing,” Nano Letters, vol. 12, pp. 2179-2186, 2012.
[25] T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and M. Aono, “Short-term plasticity and long-term potentiation mimicked in single inorganic synapses,” Nature Materials, vol. 10, pp. 591-595, 2011.
[26] U. Russo, D. Ielmini, C. Cagli, A. Lacaita, S. Spiga, C. Wiemer, M. Perego, and M. Fanciulli, “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM,” IEEE Technical Digest International Electron Devices Meeting, 2007, pp. 775-778.
[27] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Applied Physics Letters, vol. 85, pp. 5655-5657, 2004.
[28] B. J. Choi, D. S. Jeong, S. K. Kim, S. Choi, J. H. Oh, C. Rohde, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” Journal of Applied Physics, vol. 98, 033715, 2005.
[29] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Applied Physics Letters, vol. 92, 022110, 2008.
[30] D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. J. Lee, S. A. Seo, and I. K. Yoo, “Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications,” IEEE Electron Device Letters, vol. 26, pp. 719-721, 2005.
[31] H. Shima, F. Takano, H. Akinaga, Y. Tamai, I. H. Inoue, and H. Takagi, “Resistance switching in the metal deficient-type oxides: NiO and CoO,” Applied Physics Letters, vol. 91, 012901, 2007.
[32] K. Nagashima, T. Yanagida, K. Oka, and T. Kawai, “Unipolar resistive switching characteristics of room temperature grown SnO2 thin films,” Applied Physics Letters, vol. 94, 242902, 2009.
[33] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, “Nonpolar resistance switching of metal/binary transition metal oxides/metal sandwiches: Homogeneous-inhomogeneous transition of current distribution,” Physical Review B, vol. 77, 035105, 2008.
[34] M. N. Kozicki, M. Park, and M. Mitkova, “Nanoscale memory elements based on solid-state electrolytes,” IEEE Transactions on Nanotechnology, vol. 4, pp. 331-338, 2005.
[35] M. Kundu, K. Terabe, T. Hasegawa, and M. Aono, “Effect of sulfurization conditions and post-deposition annealing treatment on structural and electrical properties of silver sulfide films,” Journal of Applied Physics, vol. 99, 103501, 2006.
[36] T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono, “Nanometer-scale switches using copper sulfide,” Applied Physics Letters, vol. 82, pp. 3032-3034, 2003.
[37] K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin, and Y. Nishi, “Bipolar resistive switching in polycrystalline TiO2 films,” Applied Physics Letters, vol. 90, 113501, 2007.
[38] M. N. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, “A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte,” IEEE Transactions on Nanotechnology, vol. 5, pp. 535-544, 2006.
[39] C. Schindler, S. C. Puthen Thermadam, R. Waser, and M. N. Kozicki, “Bipolar and unipolar resistive switching in Cu-doped SiO2,” IEEE Transactions on Electron Devices, vol. 54, pp. 2762-2768, 2007.
[40] C. Schindler, M. Meier, R. Waser, M. N. Kozicki, “Resistive switching in Ag-Ge-Se with extremely low write currents,” IEEE Non-Volatile Memory Technology Symposium, 2007, p. 82-85.
[41] C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama, “High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application,” Applied Physics Letters, vol. 91, 223510, 2007.
[42] C. Y. Lin, C. Y. Wu, C. Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, and T.-Y. Tseng, “Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices,” IEEE Electron Device Letters, vol. 28, pp. 366-368, 2007.
[43] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu, “Characteristics and mechanism of conduction set process in TiN/ZnO/Pt resistance switching random-access memories,” Applied Physics Letters, vol. 92, 232112, 2008.
[44] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” IEEE Technical Digest International Electron Devices Meeting, 2008, pp. 297-300.
[45] H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang, W. H. Liu, C. H. Tsai, S. S. Sheu, P. C. Chiang, W. P. Lin, C. H. Lin,W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai, “Evidence and solution of over-RESET problem for HfOx based resistive switching with sub-ns switching speed and high endurance,” IEEE Technical Digest International Electron Devices Meeting, 2010, pp. 460-463.
[46] J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros- Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Applied Physics Letters, vol. 97, 232101, 2010.
[47] T.-W. Lee and J. H. Nickel, “Memristor resistance modulation for analog applications,” IEEE Electron Device Letters, vol. 33, pp. 1456-1458, 2012.
[48] M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, “Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory,” Advanced Materials, vol. 19, pp. 2232-2235, 2007.
[49] J. R. Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal, and N. A. Pertsev, “Resistive switching in metal–ferroelectric–metal junctions,” Applied Physics Letters, vol. 83, 4595-4597, 2003.
[50] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Applied Physics Letters, vol. 85, pp. 4073-4075, 2004.
[51] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, and K. Kim, “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures,” Nature Materials, vol. 10, 625, 2011.
[52] J. L. Murray and H. A. Wriedt, “The O-Ti (Oxygen-Titanium) system,” Journal of Phase Equilibria, vol. 8, pp. 148-165, 1987.
[53] J. J. Yang, G. Ribeiro, and R. S. Williams, “Memristors with a switching layer comprising a composite of multiple phases,” Patent US 8415652 B2.
[54] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, “Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance,” Applied Physics Letters, vol. 93, 033506, 2008.
[55] Y. Sato, K. Tsunoda, K. Kinoshita, H. Noshiro, M. Aoki, and Y. Sugiyama, “Sub-1100-A reset current of nickel oxide resistive memory through control of filamentary conductance by current limit of MOSFET,” IEEE Transactions on Electron Devices, vol. 55, pp. 1185-1191, 2008.
[56] S. Dietrich, M. Angerbauer, M. Ivanov, D. Gogl, H. Hoenigschmid, M. Kund, C. Liaw, M. Markert, R. Symanczyk, L. Altimime, S. Bournat, and G. Mueller, “A Nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 839-845, 2007.
[57] A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, and S. Kaza, “Switching characteristics of Cu2O metal-insulator-metal resistive memory,” Applied Physics Letters, vol. 91, 123517, 2007.
[58] A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, S. Kaza, and Z. Lan, “Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory,” Applied Physics Letters, vol. 92, 013503, 2008.
[59] M. J. Lee, S. Seo, D. C. Kim, S. E. Ahn, D. H. Seo, I. K. Yoo, I. G. Baek, D. S. Kim, I. S. Byun, S. H. Kim, I. R. Hwang, J. S. Kim, S. H. Jeon, B. H. Park, “A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories,” Advanced Materials, vol. 19, pp. 73-76, 2007.
[60] M.-J. Lee, Y. Park, B.-S. Kang, S.-E. Ahn, C. Lee , K. Kim, W. Xianyu,G. Stefanovich, J.-H. Lee, S.-J. Chung, Y.-H. Kim, C.-S. Lee, J.-B. Park, I.-G. Baek, I.-K. Yoo, “2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications,” IEEE Technical Digest International Electron Devices Meeting, 2007, pp. 771-774.
[61] J. W. Seo, S. J. Baik, S. J. Kang, Y. H. Hong, J. H. Yang, and K. S. Lim, “A ZnO cross-bar array resistive random access memory stacked with heterostructure diodes for eliminating the sneak current effect,” Applied Physics Letters, vol. 98, 233505, 2011.
[62] Y. C. Shin, J. W. Song, K. M. Kim, B. J. Choi, S. Choi, H. J. Lee, G. H. Kim, T. Y. Eom, and C. S. Hwang, “(In,Sn)2O3/TiO2/Pt Schottky-type diode switch for the TiO2 resistive switching memory array,” Applied Physics Letters, vol. 92, 162904, 2008.
[63] J.-J. Huang, T.-H. Hou, C.-W. Hsu, Y.-M. Tseng, W.-H. Chang, W.-Y. Jang, and C.-H. Lin, “Flexible one diode-one resistor crossbar resistive-switching memory,” Japanese Journal of Applied Physics, vol. 51, 04DD09, 2012.
[64] M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung,W. Lee, S. Kim, S. Park, and H. Hwang, “Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications,” IEEE Electron Device Letters, vol. 32, pp. 1579-1581, 2011.
[65] X. Liu, S. M. Sadaf, M. Son, J. Park, J. Shin, W. Lee, K. Seo, D. Lee, and H. Hwang, “Co-occurrence of threshold switching and memory switching in Pt/NbOx/Pt cells for crosspoint memory applications,” IEEE Electron Device Letters, vol. 33, pp. 236-238, 2012.
[66] J. H. Lee, G. H. Kim, Y. B. Ahn, J. W. Park, S. W. Ryu, C. S. Hwang, and H. J. Kim, “Threshold switching in Si-As-Te thin film for the selector device of crossbar resistive memory,” Applied Physics Letters, vol. 100, 123505, 2012.
[67] J.-J. Huang, Y.-M. Tseng, C.-W. Hsu, and T.-H. Hou, “Bipolar nonlinear Ni/TiO2/Ni selector for 1S1R crossbar array applications,” IEEE Electron Device Letters, vol. 32, 1427-1429, 2011.
[68] J.-J. Huang, Y.-M. Tseng, W.-C. Luo, C.-W. Hsu, and T.-H. Hou, “One selector- one resistor (1S1R) crossbar array for high-density flexible memory applications,” IEEE Technical Digest International Electron Devices Meeting, 2011, pp. 733-736.
[69] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nature Materials, vol. 9, pp. 403- 406, 2010.
[70] R. Rosezin, E. Linn, L. Nielen, C. Kugeler, R. Bruchhaus, and R. Waser, “Integrated complementary resistive switches for passive high-density nanocrossbar arrays,” IEEE Electron Device Letters, vol. 32, pp. 191-193, 2011.
[71] D. Lee, J. Park, S. Jung, G. Choi, J. Lee, S. Kim, J. Woo, M. Siddik, E. Cha, and H. Hwang, “Operation voltage control in complementary resistive switches using heterodevice,” IEEE Electron Device Letters, vol. 33, pp. 600-602, 2012.
[72] K. Gopalakrishnan, R. S. Shenoy, C. T. Rettner, K. Virwani, D. S. Bethune, R. M. Shelby, G. W. Burr, A. Kellock, R. S. King, K. Nguyen, A. N. Bowers, M. Jurich, B. Jackson, A. M. Friz, T. Topuria, P. M. Rice, and B. N. Kurdi, “Highly-scalable novel access device based on Mixed Ionic Electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays,” Symposium on VLSI Technology Digest of Technical Papers, 2010, pp. 205-206.
[73] J. J. Yang, M.-X. Zhang, M. D. Pickett, F. Miao, J. P. Strachan, W.-D. Li, W. Yi, D. A. A. Ohlberg, B. J. Choi, W. Wu, J. H. Nickel, G. Medeiros-Ribeiro, and R. S. Williams, “Engineering nonlinearity into memristors for passive crossbar applications,” Applied Physics Letters, vol. 100, 113501, 2012.
[74] C.-W. Hsu, I-T. Wang, C.-L. Lo, M.-C. Chiang, W.-Y. Jang, C.-H. Lin, and T.-H. Hou, “Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 1012 cycles for 3D high-density storage-class memory,” Symposium on VLSI Technology Digest of Technical Papers, 2013, pp. T166-T167.
[75] I. G. Baek, C. J. Park, H. Ju, D. J. Seong, H. S. Ahn, J. H. Kim, M. K. Yang, S. H. Song, E. M. Kim, S. O. Park, C. H. Park, C. W. Song, G. T. Jeong, S. Choi, H. K. Kang, and C. Chung, “Realization of Vertical Resistive Memory (VRRAM) using cost effective 3D Process,” IEEE Technical Digest International Electron Devices Meeting, 2011, pp. 737-740.
[76] L. Zhang, S. Cosemans, D. J. Wouters, B. Govoreanu, G. Groeseneken, M. Jurczak, “Analysis of Vertical Cross-Point Resistive Memory (VRRAM) for 3D RRAM Design,” 5th IEEE International Memory Workshop, 2013, pp. 155-158.
[77] S. Yu, H.-Y. Chen, Y. Deng, B. Gao, Z. Jiang, J. Kang, and H.-S. P. Wong, “3D Vertical RRAM – Scaling Limit Analysis and Demonstration of 3D Array Operation,” Symposium on VLSI Technology Digest of Technical Papers, 2013, pp. T158-T159.
Chapter 2
[1] D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nature Nanotechnology, vol. 5, pp. 148-153, 2010.
[2] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, “Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films,” Applied Physics Letters, vol. 91, 012907, 2007.
[3] C. B. Lee, B. S. Kang, A. Benayad, M. J. Lee, S.-E. Ahn, K. H. Kim, G. Stefanovich, Y. Park, and I. K. Yoo, “Effects of metal electrodes on the resistive memory switching property of NiO thin films,” Applied Physics Letters, vol. 93, 042115, 2008.
[4] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Applied Physics Letters, vol. 85, pp. 5655-5657, 2004
[5] W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, and M.-J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Applied Physics Letters, vol. 92, 022110, 2008.
[6] W.-Y. Chang, K.-J. Cheng, J.-M. Tsai,H.-J. Chen, F. Chen, M.-J. Tsai, and T.-B. Wu, “Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals,” Applied Physics Letters, vol. 95, 042104, 2009.
[7] D. C. Kim, M. J. Lee, S. E. Ahn, S. Seo, J. C. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon, and B. I. Ryu, “Improvement of resistive memory switching in NiO using IrO2,” Applied Physics Letters, vol. 88, 232106, 2006.
[8] H. W. Zhang, B. Gao, B. Sun, G. P. Chen, L. Zeng, L. F. Liu, X. Y Liu, J. Lu, R. Q. Han, J. F. Kang, and B. Yu, “Ionic doping effect in ZrO2 resistive switching memory,” Applied Physics Letters, vol. 96, 123502, 2010.
[9] D. Panda, A. Dhar and S. K. Ray, “Non-volatile memristive switching characteristics of TiO2 films embedded with nickel nanocrystals” IEEE Trans. Nanotechnology, in press.
[10] N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High- Temperature Oxidation of Metals, New York: Cambridge Univ. Press, 2006.
[11] http://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/interactive.php “The interactive Ellingham diagram”
[12] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” Journal of Applied Physics, vol. 98, 033715, 2005.
Chapter 3
[1] N. F. Mott, “Note on the contact between a metal and an insulator or semi-conductor,” Proceedings of the Cambridge Philosophical Society, vol. 34, pp. 568-572, 1938.
[2] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, Hoboken, NJ, 2007), Chap. 3.
[3] M. McColl and M. F. Millea, “Advantages of Mott barrier mixer diodes,” Proceedings of the IEEE, vol. 61, pp. 499-500, 1973.
[4] J.-J. Huang, T.-H. Hou, C.-W. Hsu, Y.-M. Tseng, W.-H. Chang, W.-Y. Jang, and C.-H. Lin, “Flexible one diode-one resistor crossbar resistive-switching memory,” Japanese Journal of Applied Physics, vol. 51, 04DD09, 2012.
[5] J.-J. Huang, Y.-M. Tseng, W.-C. Luo, C.-W. Hsu, and T.-H. Hou, “One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications,” IEEE Technical Digest International Electron Devices Meeting, 2011, pp. 733-736.
[6] M. J. Lee, S. Seo, D. C. Kim, S. E. Ahn, D. H. Seo, I. K. Yoo, I. G. Baek, D. S. Kim, I. S. Byun, S. H. Kim, I. R. Hwang, J. S. Kim, S. H. Jeon, B. H. Park, “A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories,” Advanced Materials, vol. 19, pp. 73-76, 2007.
[7] M.-J. Lee, Y. Park, B.-S. Kang, S.-E. Ahn, C. Lee , K. Kim, W. Xianyu,G. Stefanovich, J.-H. Lee, S.-J. Chung, Y.-H. Kim, C.-S. Lee, J.-B. Park, I.-G. Baek, I.-K. Yoo, “2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications,” IEEE Technical Digest International Electron Devices Meeting, 2007, pp. 771-774.
[8] J. W. Seo, S. J. Baik, S. J. Kang, Y. H. Hong, J. H. Yang, and K. S. Lim, “A ZnO cross-bar array resistive random access memory stacked with heterostructure diodes for eliminating the sneak current effect,” Applied Physics Letters, vol. 98, 233505, 2011.
[9] Y. C. Shin, J. W. Song, K. M. Kim, B. J. Choi, S. Choi, H. J. Lee, G. H. Kim, T. Y. Eom, and C. S. Hwang, “(In,Sn)2O3/TiO2/Pt Schottky-type diode switch for the TiO2 resistive switching memory array,” Applied Physics Letters, vol. 92, 162904, 2008.
[10] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, vol. 98, 041301, 2005.
[11] Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, “Optical and electronic properties of post-annealed ZnO Al thin films,” Applied Physics Letters, vol. 96, 171902, 2010.
[12] O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, “Metal-like conductivity in transparent Al doped ZnO films,” Applied Physics Letters, vol. 90, 252108, 2007.
[13] B. T. Khuri-Yakub and J. G. Smits, “Reactive magnetron sputtering of ZnO,” Journal of Applied Physics, vol. 52, pp. 4772-4774, 1981.
[14] K. H. Kim, B. S. Kang, M.-J. Lee, S.-E. Ahn, C. B. Lee, G. Stefanovich, W. X. Xianyu, K.-K. Kim, J. S. Kim, I. K. Yoo, and Y. Park, “Defect-induced degradation of rectification properties of aged Pt/n-InxZn1-xOy Schottky diodes,” Applied Physics Letters, vol. 92, 233507, 2008.
[15] D. H. Lee, K. Nomura, T. Kamiya, and H. Hosono, “Diffusion-limited a-IGZO/Pt Schottky junction fabricated at 200 oC on a flexible substrate,” IEEE Electron Device Letters, vol. 32, pp. 1695-1697, 2011.
[16] C.-H. Choi, Y. Wu, J.-S. Goo, Z. Yu, and R. W. Dutton, “Capacitance reconstruction from measured C-V in high leakage, nitride-oxide MOS,” IEEE Transactions on Electron Devices, vol. 47, pp. 1843-1850, 2000.
[17] R. Menon, K. Sreenivas, and V. Gupta, “Influence of stress on the structural and dielectric properties of rf magnetron sputtered zinc oxide thin film,” Journal of Applied Physics, vol. 103, 094903, 2008.
[18] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, S. Kim, J. R. LaRoche, and F. Ren, “Temperature-dependent characteristics of Pt Schottky contacts on n-type ZnO,” Applied Physics Letters, vol. 84, pp. 2835-2837, 2004.
[19] K. Ip, B. P. Gila, A. H. Onstine, E. S. Lambers, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, S. Kim, J. R. LaRoche, and F. Ren, “Improved Pt/Au and W/Pt/Au Schottky contacts on n-type ZnO using ozone cleaning,” Applied Physics Letters, vol. 84, pp. 5133-5135, 2004.
[20] S.-H. Kim, H.-K. Kim, and T.-Y. Seong, “Effect of hydrogen peroxide treatment on the characteristics of Pt Schottky contact on n-type ZnO,” Applied Physics Letters, vol. 86, 112101, 2005.
[21] L. J. Brillson, H. L. Mosbacker, M. J. Hetzer, Y. Strzhemechny, G. H. Jessen, D. C. Look, G. Cantwell, J. Zhang, and J. J. Song, “Dominant effect of near-interface native point defects on ZnO Schottky barriers,” Applied Physics Letters, vol. 90, 102116, 2007.
[22] M.-S. Oh, D.-K. Hwang, J.-H. Lim, Y.-S. Choi, and S.-J. Park, “Improvement of Pt Schottky contacts to n-type ZnO by KrF excimer laser irradiation,” Applied Physics Letters, vol. 91, 042109, 2007.
[23] M. W. Allen and S. M. Durbin, “Influence of oxygen vacancies on Schottky contacts to ZnO,” Applied Physics Letters, vol. 92, 122110, 2008.
[24] W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, and M.-J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Applied Physics Letters, vol. 92, 022110, 2008.
[25] A. Flocke and T. G. Noll, “Fundamental analysis of resistive nanocrossbars for the use in hybrid nano/CMOS-memory,” Proceedings of the 33rd European Solid-State Circuits Conference, 2007, pp. 328-331.
Chapter 4
[1] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai, “Metal-oxide RRAM,” Proceedings of the IEEE, vol. 100, pp. 1951-1970, 2012.
[2] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges,” Advanced Materials, vol. 21, pp. 2632-2663, 2009.
[3] H. K. Yoo, S. B. Lee, J. S. Lee, S. H. Chang, M. J. Yoon, Y. S. Kim, B. S. Kang, M.-J. Lee, C. J. Kim, B. Kahng, and T. W. Noh, “Conversion from unipolar to bipolar resistance switching by inserting Ta2O5 layer in Pt/TaOx/Pt cells,” Applied Physics Letters, vol. 98, 183507, 2011.
[4] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U-I. Chung, I.-K. Yoo, and K. Kim, “A fast, high- endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures,” Nature Materials, vol. 10, pp. 625-630, 2011.
[5] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, “Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism,” IEEE Technical Digest International Electron Devices Meeting, 2008, pp. 293-296.
[6] J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Applied Physics Letters, vol. 97, 232102, 2010.
[7] I. G. Baek, C. J. Park, H. Ju, D. J. Seong, H. S. Ahn, J. H. Kim, M. K. Yang, S. H. Song, E. M. Kim, S. O. Park, C. H. Park, C. W. Song, G. T. Jeong, S. Choi, H. K. Kang, and C. Chung, “Realization of vertical resistive memory (VRRAM) using cost effective 3D process,” IEEE Technical Digest International Electron Devices Meeting, 2011, pp. 737-740.
[8] J.-J. Huang, Y.-M. Tseng, C.-W. Hsu, and T.-H. Hou, “Bipolar nonlinear Ni/TiO2/Ni selector for 1S1R crossbar array applications,” IEEE Electron Device Letters, vol. 32, pp. 1427-1429, 2011.
[9] W. Lee, J. Park, S. Kim, J. Woo, J. Shin, G. Choi, S. Park, D. Lee, E. Cha, B. H. Lee, and H. Hwang, “High current density and nonlinearity combination of selection device based on TaOx/TiO2/TaOx structure for one selector–one resistor arrays,” ACS nano, vol. 6, pp. 8166-8172, 2012.
[10] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nature Materials, vol. 9, pp. 403-406, 2010.
[11] J. Liang and H.-S. P. Wong, “Cross-point memory array without cell selectors— Device characteristics and data storage pattern dependencies,” IEEE Transactions on Electron Devices, vol. 57, pp. 2531-2538, 2010.
[12] B. Govoreanu, C. Adelmann, A. Redolfi, L. Zhang, S. Clima, and M. Jurczak, “High-Performance Metal-Insulator-Metal Tunnel Diode Selectors,” IEEE Electron Device Letters, vol. 35, pp. 63-65, 2014.
[13] Z. Zhang, Y. Wu, H.-S. P. Wong, and S. S. Wong, “Nanometer-Scale HfOx RRAM,” IEEE Electron Device Letters, vol. 34, pp. 1005-1007, 2013.
Chapter 5
[1] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai, “Metal-oxide RRAM,” Proceedings of the IEEE, vol. 100, pp. 1951-1970, 2012.
[2] B. Govoreanu, G. S. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D. J. Wouters, J. A. Kittl, and M. Jurczak, “10×10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low energy operation,” IEEE Technical Digest International Electron Devices Meeting, 2011, pp. 729-732.
[3] Z. Zhang, Y. Wu, H.-S. P. Wong, and S. S. Wong, “Nanometer-Scale HfOx RRAM,” IEEE Electron Device Letters, vol. 34, pp. 1005-1007, 2013.
[4] M. W. Allen, S. M. Durbin, and J. B. Metson, “Silver oxide Schottky contacts on n-type ZnO,” Applied Physics Letters, vol. 91, 053512, 2007.
[5] M.-S. Oh, D.-K. Hwang, J.-H. Lim, Y.-S. Choi, and S.-J. Park, “Improvement of Pt Schottky contacts to n-type ZnO by KrF excimer laser irradiation,” Applied Physics Letters, vol. 91, 042109, 2007.
[6] L. J. Brillson, H. L. Mosbacker, M. J. Hetzer, Y. Strzhemechny, G. H. Jessen, D. C. Look, G. Cantwell, J. Zhang, and J. J. Song, “Improvement of Pt Schottky contacts to n-type ZnO by KrF excimer laser irradiation,” Applied Physics Letters, vol. 90, 102116, 2007.
[7] B. Govoreanu, C. Adelmann, A. Redolfi, L. Zhang, S. Clima, and M. Jurczak, “High-Performance Metal-Insulator-Metal Tunnel Diode Selectors,” IEEE Electron Device Letters, vol. 35, pp. 63-65, 2014.