簡易檢索 / 詳目顯示

研究生: 歐陽汎怡
Fan-Yi Ou Yang
論文名稱: 非平衡磁控濺鍍製程中鍍膜厚度和鈦介層厚度對奈米晶氮化鈦薄膜之結構與性質之影響研究
Effect of film thickness and Ti interlayer thickness on the structure and properties of nanocrystalline TiN thin film deposited by unbalanced magnetron (UBM) sputtering
指導教授: 黃嘉宏
Jia-Hong Huang
喻冀平
Ge-Ping Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 101
中文關鍵詞: 氮化鈦鍍膜厚度鈦介層非平衡磁控濺鍍奈米晶
外文關鍵詞: TiN, Film thickness, Ti interlayer, UBMS, nanocrystal
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的在研究非平衡磁控濺鍍系統中,鍍膜厚度和鈦介層厚度對於奈米晶氮化鈦薄膜成分、結構、機械性質與腐蝕抗性的影響。奈米晶氮化鈦薄膜分別鍍著於單晶矽晶片與AISI D2鋼上。結果顯示,不論基材為矽晶片或是D2鋼,氮化鈦薄膜都呈現 (111) 的優選方向,跟鍍膜厚度並無明顯關係。鍍膜厚度對於氮化鈦薄膜的氮鈦比例、表面粗糙度與晶粒大小也只有輕微的關係。薄膜堆積因子則是隨著鍍膜厚度變化而幾乎維持固定,其中最薄的試片的堆積因子已高達0.8。奈米硬度儀的實驗結果顯示氮化鈦薄膜硬度分布從22GPa至29GPa並指出薄膜硬度跟薄膜織構與鍍膜厚度並無相關性。氮化鈦薄膜呈現壓縮的殘留應力,並且在基材為D2鋼時,殘留應力隨著鍍膜厚度增加而下降。從殘留應力而來的介面剪應力隨著鍍膜厚度增加而增加,然而殘留應力未必隨著鍍膜厚度增加而上升。在氮化鈦/鈦之雙層鍍膜中,有一個臨界鈦介層厚度可有效的降低氮化鈦薄膜熱應力和殘留應力。在硫酸與鹽水的動態極化掃描結果指出堆積因子對於防蝕效果比鍍膜厚度有效。此外,如果薄膜堆積因子夠高,增加鍍膜厚度或是加入一個鈦介層皆可以保護基材,避免腐蝕。


    Nanocrystalline TiN thin films were successfully deposited on Si (100) and D2 steel substrates using unbalanced magnetron sputtering (UBMS) system. The objective of this study was to investigate the effect of film thickness and Ti interlayer thickness on the composition, structures, mechanical properties, and corrosion resistance of TiN film. The results showed that (111) was the dominant preferred orientation in the TiN films. The effects of the film thickness were only slightly varied on the N/Ti ratio, roughness, and grain size. The packing factor was almost constant with film thickness and the thinnest specimen reached a quite high packing factor of 0.8. Nanoindentation data, ranging from 22~29 GPa, indicated that hardness of the films was not related to the film texture and film thickness. The residual stresses of all TiN films were compressive, and mostly decreased with increasing film thickness in TiN/D2 specimens. Interfacial shear stress induced from the residual stress was increased with film thickness, whereas the residual stress was not necessarily increased with film thickness. In the bi-layer TiN/Ti coating, there was a critical Ti interlayer thickness (120~150nm) to effectively reduce the thermal stress and residual stress in the TiN coating. The results of potentiodynamic polarization scan in both 5% NaCl and 0.5M H2SO4 + 0.05M KSCN solutions indicated that packing factor was more effective than film thickness to the corrosion resistance for the coating. Furthermore, increasing film thickness or adding a Ti interlayer could effectively protect the substrate from the corrosive medium, if the packing factor was sufficiently high.

    Table of Contents Table of Contents …..…..…..…..…..…..…..………………………… i List of Figures ………………………………………………………… ix List of Tables …….…...………………………………………………. xi Chapter 1 Introduction ……….……………………………………... 1 Chapter 2 Literature Review 2.1 Unbalanced Magnetron Sputtering (UBMS)……...…..……………………... 3 2.2 Characteristics of TiN………………………………………………………... 4 2.3 Effect of Film Thickness on the Preferred Orientation of Nitride Thin Films. 7 2.4 Residual Stress……………..…….…………………………………………... 10 2.5 Effect of Ti interlayer………………………………………………………… 11 2.6 Corrosion Resistance………………………………………………………… 13 Chapter 3 Experimental Details 3.1 Preparation of Substrate Material and Coating Process………....................... 16 3.2 Characterization Methods……………………………………......................... 17 3.2.1 XRD………………..……………….……………………...................... 17 3.2.2 Rutherford Backscattering Spectroscopy…….………………………... 21 3.2.3 FEG-SEM……….……..……………………….……………………… 22 3.2.4 Secondary Ion mass Spectroscopy (SIMS)……..……………………… 22 3.2.5 Atomic Force Microscopy (AFM).…………………………………….. 23 3.2.6 X-Ray Photoelectron Spectrometer (XPS)…………... ……………….. 23 3.2.5 Auger Electron Spectrometer (AES)……………………....................... 24 3.3 Properties Measurements…………………………………….………………. 24 3.3.1 Electrical Resistivity………………..……………….…………………. 24 3.3.2 Hardness………………………………..…….………………………... 26 3.3.3 Residual Stress…………………………………………………………. 26 3.4 Corrosion Resistance…………………..…………………………………….. 27 3.5.1 Potentiodynamic polarization……….…………………………………. 27 3.5.2 Salt spray test…………………………………………………………... 30 Chapter 4 Results 4.1 Scanning Electron Microscopy (SEM)………………………………………. 31 4.2 The Total Energy and Momentum…………………………………………… 31 4.3 X-ray Diffraction (XRD)…………………………………………………….. 38 4.4 Glancing Incident X-ray Diffraction (GIXRD)……………………………… 46 4.5 N/Zr ratios and Packing Factor………………………………………………. 46 4.6 Electrical Resistivity…………………………………………………………. 54 4.7 Roughness…………….……………………………………………………… 56 4.8 Hardness…………….…………………………….……................................. 56 4.9 Residual Stress…..…………….…………..…………………………………. 62 4.10 Saturated Bond Ratios………………………………..…………………….. 62 4.11 Compositional Depth Profiles.……..…………….…………………………. 62 4.12 Potentiodynamic Polarization………………………………………………. 66 4.12.1 0.5M H2SO4 + 0.05M KSCN ………………………………………… 66 4.12.2 5%NaCl……………………………………………………………….. 72 4.13 Salt Spray Test…………….………………………………………………... 72 Chapter 5 Discussion 5.1 Energy and Momentum...……………………………………......................... 75 5.2 Structure……………………………………………………………………… 76 5.3 Hardness……………………………………………………………………... 77 5.4 Resistivity……………………………………………………………………. 78 5.5 Residual Stress……………………………………………………………….. 79 5.5.1 Effect of Film Thickness………………..……………….……………... 79 5.5.2 Effect of Ti Interlayer………………..…….…………………………... 86 5.5.3 Substrate Effect…….……..……………………….…………………… 88 5.5 Corrosion Resistance……………………………………………………….. 90 Conclusions……...………………...…………………………... 93 References …………………………………………………………….. 95

    Reference
    1. W.-J. Chou, “Processing and Properties of Metal Nitride Thin Films Deposited by PVD Methods”, PH.D. Thesis, National Tsing Hua University, Hsinchu, Taiwan (2003)
    2. K.-W. Lau, “Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline TiN film Deposite by Unbalanced Magnetron sputtering”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2002).
    3. Rossnagel SM., “Sputter Deposition.”, “Opportunities for Innovation: Advanced Surface Engineering,” Sproul WD, Legg LO Switzerland, Technoic Publishing Co. (1995).
    4. M. Ohring, “The Material Science of Thin Films”, Academic Press, San Diego (1992), p.111.
    5. P.S. McLeod, L.D. Hartsough, J. Vac. Sci. Technol. A, 14(1) (1997) 263
    6. R.K. Waits, J. Vac. Sci. Technol., 15(2) (1978) 179
    7. B. Window, N. Savvides, J. Vac. Sci. Technol. A, 4(2) (1986) 196
    8. B. Window, N. Savvides, J. Vac. Sci. Technol. A, 4(2) (1986) 453
    9. N. Savvides, B. Window, J. Vac. Sci. Technol A, 4(2) (1986) 504
    10. P.J. Kelly, R.D. Arnell, Vacuum, 56 (2000) 159.
    11. R.P. Howson, H.A. Ha’afer, A.G. Spencer, Thin Solid Films, 193-194 (1990) 127.
    12. W.D. Sproul, Vacuum, 51(4) (1998) 641.
    13. H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.E. Sundgren, J. Appl. Phys., 80 (1996) 6725
    14. J. Stimmel, J. Vac. Sci. Technol. B, 4(6) (1986) 1377
    15. Li-Jian Meng, M.P. dos Santos, Surf. Coat. Technol., 90 (1997) 64.
    16. S. Logothetidis, I. Alexandrou, S. Kokkou, Surf. Coat. Technol., 80 (1996) 66.
    17. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol., 149 (2002) 7.
    18. Wuu-Ling Pan, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol., 110 (1998) 111.
    19. S. Groudeva-Zotova, R. Kaltofen, T. Sebald, Surf. Coat. Technol., 127 (2000) 144.
    20. J. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.-E. Sundgren, J. Appl. Phys., 80 (1996) 6725.
    21. U. C. Oh, J. H. Je, and J.Y. Lee, J. Mater. Res., 13 (1998) 1225.
    22. D. S. Rickerby, A. M. Jones, and B. A. Bellamy, Surf. Coat. Technol., 37 (1989) 4375.
    23. U. C. Oh, J. H. Je, J. Appl. Phys., 74 (1993) 1692.
    24. N. Schell, W. Matz, J. Bottiger, J. Chevallier, and P. Kringhoj, J. Appl. Phys., 91 (2002) 2037.
    25. U. C. Oh, J. H. Je, and J.Y. Lee, J. Mater. Res., 10 (1995) 634.
    26. U. C. Oh, J. H. Je, and J.Y. Lee, J. Mater. Res., 10 (1998) 634.
    27. Joshua Pelleg, L.Z. Zevin, S. Lungo, Thin Solid Films, 197 (1991) 117.
    28. J. H. Je, D.Y. Noh, H.K. Kim, K.S. Liang, J. Appl. Phys., 81(9) (1997) 6126.
    29. J. E. Greene, J.-E. Sundgren, L. Hultman, I. Petrov, and D.B. Bergstrom, Appl. Phys. Lett., 67 (1995) 2928.
    30. L. Hultman, J.-E. Sundgren, J. E. Greene, D.B. Bergstrom, and I. Petrov, J. Appl. Phys., 78 (1998) 5395.
    31. M. J. Williamson, D.N. Dunn, R. Hull, S. Kodambaka, I. Petrov and J. E. Greene, Appl. Phys. Lett., 78 (2001) 2223.
    32. T. Q. Li, S.Noda, H. Komiyama, T. Yamamoto, and Y. Ikuhara, J. Vac. Sci. Technol. A, 21 (2003) 1717.
    33. T. Q. Li, S.Noda, Y. Tsuji, T. Ohsawa, and H. Komiyama, J. Vac. Sci. Technol. A 20, (2002) 583.
    34. J. M. E. Harper, J.J. Cuomo, R. J. Gambino, H. E. Kaufman, “Ion Bombardment Modification of Surfaces: Fundamentals and Applications”, Elsevier Science, Amsterdam (1984), Ch.4.
    35. M. Zeitler, J.W. Gerlach, T. Kraus, B. Rauschenbach, Appl. Phys. Lett., 70 (10) (1997) 1254.
    36. K. Min, S. Hofmann, R. Schimizu, Thin Solid Films, 295 (1997) 1.
    37. Y. M. Chen, G.P. Yu, J.H. Huang, Surf. Coat. Technol., 141 (2001) 156.
    38. Y. Kajikawa, S. Noda, H. Komiyama, J. Vac. Sci. Technol. A, 21(6) (2003) 1943.
    39. H. Oettel, R. Wiedemann, S. PreiBler, Surf. Coat. Technol., 74-75 (1995) 273.
    40. E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37.
    41. V. Valvoda, R. Kuzel. Jr., R. Cerny, D. Rafaja, J. Musil. C. Kadlec, A. J. Perry, Thin Solid Films, 193-194 (1990) 401.
    42. Society for Automotive Engineering, “Residual Stress Measurement by X-ray Diffraction”, SAE J748a, 2nd Ed. (1971).
    43. I. C. Noyan, J. B. Cohen, “Residual Stress, Measurement by Diffraction and Interpretation”, Springer-Verlag, New York (1987).
    44. R. Feder, B.S. Berry, J. Appl. Crystallogr., 3 (1970) 372.
    45. E.I. Hasse, Thin Solid Films, 124 (1985) 283.
    46. H. Uchida, T. Kiguchi, A. Saiki, N. Wakiya, N. Ishizawa, K. Shinozaki, N. Mizutani, J. Ceram. Soc. Jpn., 107 (7) (1999) 606.
    47. C.H. Ma, J.H. Huang, Haydn Chen, Thin Solid Films, 418 (2002) 73.
    48. F.S. Shieu, L.H. Cheng, M.H. Shiao, S.H. Lin, Thin Solid Films, 311 (1997) 138.
    49. M. Leoni, P. Scardi, S. Rossi, L. Fedrizzi, Y. Massiani, Thin Solid Films, 345 (1999) 263.
    50. J.-H. Huang, Y.-P. Tsai, G.-P. Yu, Thin Solid Films, 355-356 (1999) 440.
    51. V. Valvoda, R. Kuzel. Jr., R. Cerny, J. Musil, Thin Solid Films, 156 (1988) 53.
    52. J.Y. Chen, G.P. Yu, J.H. Huang, Mater. Chem. Phys., 65 (2000) 310.
    53. B.F. Chen, W.L. Pan, G.P. Yu, J. Hwang, J.H. Huang, Surf. Coat. Technol., 111 (1999) 16.
    54. L. Hultman, S.A. Barnett, J.E. Sundgren, J.E. Greene, J. Cryst. Growth, 92 (1988) 639.
    55. F.S. Shieu, Y.C. Sung, L.H. Cheng, J.h. Huang, G.P. Yu, Corros. Sci., 39 (1997) 893.
    56. L. van Leaven, M.N. Alias, R. Brown, Surf. Coat. Technol., 53 (1992) 25.
    57. K. Takizawa, M. Fukushima, K. KuroKawa, H. Okada and H. Imai, Hyomen Gijutsu, 42 (1991) 1152.
    58. M. J. Pryor, L.L. Shreir, “Corrsion 1”, Nwenes-Butterworths, 2nd Ed. (1976), p. 1192
    59. L. L. Shrier, L.L. Shreir, “Corrsion 1”, Nwenes-Butterworths, 2nd Ed. (1976), p. 1150
    60. Hitoshi Uchida, Shozo Inoue, Keiji Koterazawa, Mater. Sci. Eng. A, 234-236 (1997) 649.
    61. T. Okamoto, M. Fushima, K. Takizawa, Corros. Eng., 45 (1996) 425.
    62. T. Kado, R. Makabe, S.Mochizuki, S. Nakajima and M. Araki, Boshoku Gijutsu (Corrosion Engineering), 36 (1987) 551.
    63. T.A. Mantyla, P.J. Helevirta, T.T. Lepisto, P.T. Bonora, Thin Solid Films, 126 (1985) 275.
    64. A. Erdedemir, W.B. Carter, R.F. Hochman, E.I. Meletis, Mater. Sci. Eng., 69 (1985) 89.
    65. A. Telama, T. Mantyla, P. Kettunen, J. Vac. Sci. Technol. A, 4(6) (1986) 2911.
    66. M. Tavi, J. Aromaa, O. Forsen, S. Ylasaari, “Porceedings of 12th World Congress on Surface Finishing”, AITE, France (1988), p. 955.
    67. K. Fukutomi and M. Okada, Kinzoku Htomen Gijutsu, 35 (1984) 45
    68. W. J. Chou, G.P. Yu, J.H. Huang, Corros. Sci., 43 (2001) 2023.
    69. C. H. Ho, “Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by HCD Ion Plating”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2003).
    70. M. Lakatos-Varsanyi, Darko Hanzel, Corrs. Sci., 41 (1999) 1585.
    71. S. Rossi, L. Fedrizzi, M. Leoni, P. Scardi, Y. Massiani, Thin Solid Flms, 350 (1999) 161.
    72. R. Hubler, A. Schroer, W. Ensinger, G.K. Wolf, F. C. Steadile, W. H. Schreiner, I. J. R. Baumvol, J. Vac. Sci. Technol. A, 11 (1993) 451.
    73. P. Bhardwaj, O. J. Gregory, L. Bragga, M. H. Richman, Appl. Surf. Sci., 48-49 (1991) 555.
    74. Y. Massiani, P. Gravier, L. Fedrizzi, S. Rossi, in: L. Fedrizzi, P.L. Bonora (Eds.), “Organic and Inorganic Coatings for Corrosion Prevention: Research and Experience”, The Institute of Materials, London (1997), p.291.
    75. M. Herranen, U, Wiklund, J.-O. Carlsson, S. Hogmark, Surf. Coat. Technol., 99 (1998) 191.
    76. R. Hubler, A. Schroer, W. Ensinger, G.K. Wolf, W. H. Schreiner, I. J. R. Baumvol, Surf. Coat. Technol., 60 (1993) 561.
    77. M. Flores, O. Blanco, S. Muhl, C. Pina, J. Heiras, Surf. Coat. Technol., 108-109 (1998) 449.
    78. J.F. Macro, A.C. Agudelo, J. R. Gancedo, D. Hanzel, Surf. Interface Anal., 27 (1999) 71.
    79. M. J. Park, A. Leyland, A. Matthews, Surf. Coat. Technol., 43-44 (1990) 481.
    80. P. Scherrer, Gött. Nachr, 2 (1918) 98.
    81. Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray Crystallography”, McGraw-Hill, New York (1958), p.233
    82. K. Tanaka, H. Yanashima, T. Yako, K. Kamio, K. Sugai, S. Kishida, Appl. Surf. Sci., 171 (2001) 71.
    83. “Metals Handbook 9th Ed.”, Vol. 13, ASM INTERNATIONAL, Metals Park, OH, (1988), p.212.
    84. “ASTM standards”, Section 3, B117 (1996), p.4.
    85. Y.-W. Lin ”Effect of Substrate Bias on the Structure and Properties of Nanocrystalline ZrN Thin Film Deposited by Unbalanced Magnetron (UBM) Sputtering” Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2003)
    86. McLeod PS, Hartsough LD, J. Vac. Sci. Technol., 14(1) (1977) 263.
    87. J.O. Kim, J.D. Shinn, P.B. Mirkarimi, S.A. Barnett, J. Cryst. Growth 135, (1994) 309.
    88. I. Bertoti, M. Mohai, J.L. Sullivan, S.O. Saied, Appl. Surf. Sci., 84 (1995) 357.
    89. R.D. Arnell, J.S. Colligon, K.F. Minnebaev and V.E. Yurasova, Vacuum, 47(5) (1996) 425.
    90. J.-H. Huang, C.-Y. Hsu, S.-S. Chen, G.-P. Yu, Mater. Chem. Phys., 77 (2002) 14.
    91. J.-H. Huang, C,-H. Lin, C.-H. Ma, Haydn Chen, Scripta. Mater., 42 (2000) 573.
    92. M.Ohring, “The Material Science of Thin Films”, Academic Press, San Diego (1992), p.225.
    93. J. D. Eshelby, F.C. Frank, F.R.N. Nabarro, Philos. Mag., 42 (1951) 351.
    94. I.A. Ovid’ko, Science, 295 (2002) 2386.
    95. J. Schiotz, Karsten W. Jacobsen, Science,301 (2003) 1357
    96. P Jin, S Maruno, Jpn. J. Appl. Phys., 30 (1991) 1463.
    97. L.B. Freund and S. Suresh, “Thin Film Materials: Stress, Defect Formation and Surface Evolution”, Cambridge UK (2003), p.258.
    98. L.B. Freund and S. Suresh, “Thin Film Materials: Stress, Defect Formation and Surface Evolution”, Cambridge UK (2003), p.254.
    99. T. Nakano, s. Baba, A. Lobayashi, A. Kinbara, T. Kajiwara, K. Watanabe, J. Vac. Sci. Technol. A, 9 (1991) 2431.
    100. N.J.M. Carvalho, E. Zoestbergen, B.J. Kooi, J.Th.M. De Hosson, Thin Solid Films, 429 (2003) 179.
    101. http://www.webelements.com/webelements/elements/text/Si/phys.html
    102. H.-C. Yang, “Effect of Film thickness on the Structure and Properties of Nanocrystalline ZrN Thin Film Deposited by Ion Plating” Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE