研究生: |
張俊宏 Chang, Chin-Hung |
---|---|
論文名稱: |
高解析中紅外一氧化二氮光譜可行性研究 Feasibility study on high resolution mid-IR spectroscopy of nitrous oxide |
指導教授: |
施宙聰
Shy, Jow-Tsong |
口試委員: |
林泰生
周哲仲 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 差頻光 、中紅外 、飽和吸收光譜 、線寬縮減 、一氧化二氮 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用鈦藍寶石雷射 (Ti:Sapphire laser) 與Nd:YAG雷射透過中紅外PPLN (Periodically poled lithium niobate) 產生的中紅外差頻光源 (DFG),嘗試利用已知的技術將一氧化二氮 (N2O) 的基頻帶 (0001←0000)中的R(15) 線寬縮減至200 kHz左右,希望可以解析基頻帶中的R(1)的電四極超精細結構 (Electric quadrupole hyperfine structure),並重新計算電四極耦合常數 (Electric quadrupole coupling constants)。
根據線寬增寬的原理,N2O分子的線寬受到都普勒線寬增寬、碰撞增寬、穿越時間增寬和功率增寬的影響而增寬。為了將N2O分子的線寬縮減至200 kHz以下,我們利用飽和吸收光譜法,並取三階微分飽和訊號,消除都普勒線寬增寬的影響。利用渦輪幫浦 (Turbo pump) 將N2O氣室的壓力降至6 ~ 8 mtorr,降低碰撞增寬的影響。利用擴束鏡組增大DFG的束徑,降低穿越時間增寬的效應。在本實驗中,我們嘗試利用三種擴束鏡組,將DFG束徑增至0.37 mm、2 mm和4.17 mm,並在每一種束徑下,量測線寬與壓力變化的關係。線寬可以利用偵測飽和訊號三階微分的大小隨調制寬度的改變,並透過擬合的方式決定。根據我們的實驗結果,線寬與壓力和束徑的關係符合預期:當束徑越大的時候,線寬就越窄 ; 當壓力越小的時候,線寬也越窄。
考慮基頻帶R(15)的超精細結構170 kHz,加上DFG雷射線寬為300 kHz,此為R(15)的線寬解析極限。然而,我們量到最窄的線寬為625 kHz,顯示線寬可以再進一步窄化。未來可以嘗試利用擴束比例較大的擴束鏡組,將線寬再進一步窄化。
In this thesis, we try to narrow the linewidth of N2O 0001←0000 fundamental band R(15) transition down to 200 kHz by a CW mid-infrared MgO:PPLN-based difference frequency generation (DFG) source pumped by a Ti:Sapphire laser and power boosted Nd:YAG laser. We expect that the electric quadrupole hyperfine structure of N2O 0001←0000 fundamental band R(1) transition can be resolved and could calculate the electric quadrupole constant.
According to the mechanism of line broadening, the linewidth of N2O molecular is broadened affected by the Doppler line broadening, collisional line broadening, transit-time broadening and power broadening. Hence, in order to narrow the linewidth down to 200 kHz, we utilize the saturation spectroscopy to remove the Doppler broadening and produce the 3rd derivative of Lamb-dip signal. In order to eliminate the pressure broadening, we utilize a turbo pump to lower the pressure of N2O gas cell to near 6 ~ 8 mtorr. We use beam expander to expand the DFG to reduce the transit-time broadening. In this experiment, we use three kinds of beam expanders to expand the DFG with spot size 0.37 mm, 2.0 mm and 4.17 mm, and we measure the dependence between linewidth and pressure in each spot size. The linewidth can be determined by fitting the 3rd derivative saturation signal in response to the different modulation width. According to the result of experiment, the relation between linewidth versus pressure and spot size are the same as expectation respectively: the lower the pressure is, the narrower the linewidth is; the larger the spot size is, the narrower the linewidth is.
Adding the span of the hyperfine structure of fundamental band R(15) 170 kHz and the DFG linewidth is near 300 kHz, this is the limitation of linewidth resolving on R(15). Because the narrowest linewidth we measured is 625 kHz, this means the linewidth can be narrowed further more. We can apply another beam expander with larger beam expanding ratio to investigate the linewidth in the future.
[1] V. I. Perevalov et al., Journal of Quantitative Spectroscopy and Radiative Transfer 113 (2012).
[2] J. S. Wells et al., J Opt Soc Am B 2 (1985).
[3] B. G. Whitford et al., Optics Communications 14 (1975).
[4] M. Tachikawa et al., IEEE J. Quantum Electron. 32 (1996).
[5] C. Amiot, and G. Guelachvili, Journal of Molecular Spectroscopy 59 (1976).
[6] R. A. Toth, J Opt Soc Am B 4 (1987).
[7] F. Xie et al., Selected Topics in Quantum Electronics, IEEE Journal of PP (2012).
[8] H.-C. Chen et al., Opt. Lett. 37 (2012).
[9] I. Galli et al., Opt. Express 17 (2009).
[10] A. S. Pine, J. Opt. Soc. Am. 64 (1974).
[11] D. Mazzotti et al., Opt Lett 30 (2005).
[12] 廖俊杰,『二氧化碳分子在4.3 μm即2.7 μm之高精密光譜研究』,國立清華大學物理系博士學位論文 (1998)
[13] 謝清翔,『Frequency Measurement Using Frequency Comb』,國立清華大學物理系碩士論文 (2011)
[14] 陳仕恩,『絕對頻率量測與共路徑自參考干涉儀之研究』,國立清華大學物理系碩士論文 (2012)
[15] J. E. Thomas, M. Burns, and A. Javan, Opt Lett 5 (1980).
[16] K. H. Casleton, and S. G. Kukolich, The Journal of Chemical Physics 62 (1975).
[17] S. J. Tetenbaum, Physical Review 88 (1952).
[18] J. E. Thomas, Ph.D. thesis, 1979.
[19] HITRAN 2008 database
[20] N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1956).
[21] 藍子凱,『差頻光源之研究』,國立清華大學物理系碩士論文 (2011)
[22] W. Demtroder, Laser Spectroscopy, 4ed. Vol. 1
[23] W. Demtroder, Laser Spectroscopy, 4ed. Vol. 2
[24] Nakazawa, M. (1986). Phase-sensitive detection on Lorentzian line shape and its application to frequency stabilization of lasers. Journal of Applied Physics, 59(7), 2297. doi:10.1063/1.336326
[25] Fang, H.-M., Wang, S. C., & Shy, J.-T. (2006). Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532nm. Optics Communications, 257(1), 76–83. doi:10.1016/j.optcom.2005.07.016
[26] 方惠梅,『碘分子穩頻雷射之研究』,國立交通大學光電工程系所博士論文 (2005)
[27] Operator’s Manual Model MBR-110 Single Frequency Ti:Sapphire Laser, Coherent, Santa Clara, CA, 2002.
[28] T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65-67 (1985)
[29]Giusfredi, G., Mazzotti, D., Cancio, P., & De Natale, P. (2001). Spatial Mode Control of Radiation Generated by Frequency Difference in Periodically Poled Crystals. Physical Review Letters, 87(11). doi:10.1103/PhysRevLett.87.113901